Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug prevents diabetes recurrence after islet cell transplantation

20.01.2004


A new anti-inflammatory compound called Lisofylline prevents diabetes from coming back after insulin-manufacturing islet cells are transplanted into diabetic mice, according to a new study by researchers at the University of Virginia Health System. The study is published in the January 20 issue of the journal Transplantation.



Pancreatic islet cell transplantation has become a promising treatment for type 1 diabetes in humans in recent years. But without several powerful immunosuppressive drugs, the body’s immune system would destroy the engrafted islet cells in transplant patients leading to insulin deficiency, an excess of glucose in the blood and the return of diabetes.

Lisofylline, or LSF, has the potential to help prevent this cellular destruction by preserving insulin secretion by pancreatic beta cells in the presence of autoimmune attackers called inflammatory cytokines, according to U.Va. researchers.


"Our findings are very encouraging and we are excited that Lisofylline worked so well in this animal model," said Dr. Jerry Nadler, chief of the division of endocrinology and metabolism at U.Va. and director of the Diabetes and Hormone Center of Excellence. "We have discovered a potentially new way to protect islet cells in a clinical transplant setting. It’s possible this research could form a basis for additional studies to use LSF or related anti-inflammatory compounds in humans to limit the need for more toxic immunosuppressant drugs in islet cell transplant patients."

In the study, diabetic mice that can only mount an autoimmune attack were given islet transplants in the kidney and then daily injections of LSF for 3 weeks. A control group was treated with only saline. Results of blood glucose tests showed that the LSF-treated mice maintained healthy glucose levels, without immunosuppressants and insulin, for more than 65 days. Mice treated with saline maintained healthy glucose levels for just six days. After researchers removed the kidneys, tests showed that insulin-positive beta cells had been retained in the islet cell grafts of the LSF-treated mice.

"We have found that Lisofylline has a unique function in protecting insulin-producing beta cells," said Dr. Zandong Yang, study co-author and assistant professor of research in the division of endocrinology and metabolism at U.Va. "At the cellular level, LSF inhibits a pathway that delivers cytokine damage to beta cells. At the molecular level, we believe LSF enhances the life-span and energy production of beta cells by increasing metabolism in the cellular mitochondria, the engine of a cell."

Yang says U.Va. researchers are hoping to test LSF in human islet cell transplant patients as part of the solution that surrounds the isolated islets. "This would be a great help and protect these cells from dying," he said.


The study was funded in part by grants from the Juvenile Diabetes Research Foundation and the Islet Replacement Research Foundation in Gordonsville, Va.

Bob Beard | EurekAlert!
Further information:
http://hsc.virginia.edu/news

More articles from Health and Medicine:

nachricht Researchers image atomic structure of important immune regulator
11.12.2018 | Brigham and Women's Hospital

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>