Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chagas’ disease: virulence factor identified

07.01.2004


Chagas’ disease affects over 18 million people in Latin America. The agent responsible is a protozoan parasite, Trypanosoma cruzi, transmitted by haematophagous insects. For survival in the host’s organism, it uses several strategies, but especially one of inhibiting the host’s immune response. Research scientists from the IRD and INSERM (1) who are studying this trypanosome found that one of the proteins it secretes, Tc52, is a virulence factor that plays a pivotal role in the infection mechanism. Combining different in–vitro and in-vivo approaches, they brought into evidence its role in the development of infection and performed the molecular characterization by peptide analysis of the minimal sequence of Tc52 that carries immunosuppressive activity. Knowledge of the biological activity of this factor raises the prospects for developing vaccination strategies or drugs to combat T. cruzi.



Chagas’ disease – or American trypanosomiasis – is a parasitic illness which affects nearly 20 million people mainly in tropical regions of Central and South America. The aetiological agent that causes it is a flagellate protozoan, Trypanosoma cruzi, transmitted to humans by haematophagous insects (Reduviidae). Research scientists from the IRD research unit "Pathogénie des Trypanosomatidae" and co-workers from INSERM have studied the parasite’s development cycle, its virulence and its involvement in the infection process, with a view to identifying possible prevention and control methods. Using techniques of cellular and molecular biology, and of biochemistry, they sought to identify the nature and function of T. cruzi genes which code for the factors responsible for the virulence, in particular a protein called Tc52.

As in any parasitic disease, the pathogen’s ability to survive in its vertebrate host depends on many mechanisms, especially one which weakens the host’s immune response. In Chagas’ disease, during its life-cycle in humans T. cruzi takes on two forms, an infective flagellate one (trypomastigote) which circulates and reproduces in the blood and another intracellular one without flagellum (amastigote), which in its turn multiplies to produce another batch of circulating forms. These two forms prove to be able to secrete this protein Tc52. The research team revealed it to have several activities, including enzyme activity (2) and an immunosuppressive activity. The protein released by T. cruzi influences in a complex way the physiology of the host cell. It acts on cells of the immune system, the macrophages and the dendritic cells, and notably blocks the production of interleukin 2 (IL-2), a cytokine necessary for T-lymphocyte proliferation, in this way exerting an immunosuppressive activity.


Experimental infections with T. cruzi have been conducted in the laboratory on mice immunized beforehand with this protein. These led to a reduction in mortality rate during the acute phase of the disease, showing that it is possible to protect them partially against such infection. In addition, mutant parasites obtained by targeted deletion of a protein-coding allele of the Tc52 gene have been used for analysis, again in vivo, of the effects of a decrease in Tc52 production on the host immune response and the development of symptoms of the chronic phase, especially the inflammation reaction. Infection by these mutants results in normal production of IL-2 and attenuation of these symptoms. The research team subsequently performed the molecular characterization of the minimal amino-acid sequence, or minimum functional domain, of the protein responsible for the immunosuppressive activity.

The results of this work as a whole demonstrate that this protein secreted by T. cruzi plays a key role in the development of the infection and the pathological manifestations of Chagas’ disease. As its enzyme and immunosuppressive activity are now known, the prospect emerges of developing biochemical strategies– involving inhibition of Tc52’s enzyme activity by anti-parasitic drugs – or vaccines, against T. cruzi. Research projects are currently planned in conjunction with other institutes (3) with the objective of molecular characterization of particular receptors of this protein situated on the macrophages and the dendritic cells, and of devising specific inhibitors. In this way they will contribute to formulation of the tools necessary for drug development.

(1) UR 008 Pathogénie des Trypanosomatidae of the IRD
(2) thioltransferase, involved in the parasite’s protection against oxidation stress.
(3) CNRS Laboratoire d’immunologie et chimie thérapeutique (UPR 9021) at Strasbourg and INSERM joint research unit (UMR) 564 of Angers Faculty of Medicine.


References:

Borges M, cordeiro-Da-Silva A, Sereno D & Ouaissi A. Peptide-based analysis of the amino acid sequence important to the immunoregulatory function of Trypansosma cruzi Tc52 virulence factor. Immunology, 2003, 109: 147-155.

Garzon E, Borges M, Cordeiro-Da-Silva, Nacife V, Nazareth M, Guilvard E, bosseno MF, guevara A, Breniere FS & Ouaissi A. Trypanosma cruzi carrying a targeted deletion of a Tc52 protein-encoding allele elicits attenuated Chagas’disease in mice. Immunol. Lett., 2003, 89: 67-80.

Borges Margarida – Molecular and functional characterization of Tc52 virulent factor properties from Trypanosoma cruzi: analysis of its role in immunopathological processes observed during infection. Thesis upheld on 6/10/2003 at the University of Porto, Portugal.

Bénédicte Robert | EurekAlert!
Further information:
http://www.paris.ird.fr/

More articles from Health and Medicine:

nachricht Sugar entering the brain during septic shock causes memory loss
23.04.2019 | Rensselaer Polytechnic Institute

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>