Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changes in shape of single protein plays key role in the spread of cancer cells

07.01.2004


Milestone discovery of the 3-D structure and function of vinculin explains how this protein changes its shape to perform different functions in health and disease



The discovery of how a protein called vinculin undergoes exquisitely precise changes in its shape is helping to answer some major questions about the life of cells, the development of tissues and organs and the spread of cancer from one part of the body to another. These findings, to be published in the Jan. 8, 2004, issue of Nature, were made by scientists at St. Jude Children’s Research Hospital.

The newly recognized way that this protein can change its shape is important because slight changes in the shape of vinculin completely change its role in the cell, making the protein a versatile tool for completing different tasks. For example, by alternately changing its shape from active to inactive forms, vinculin can control the cell’s ability to remain stationary or move through its environment.


Vinculin enables cells to move within developing tissues and organs of the embryo and spark the healing of wounds. But vinculin can also regulate the ability of cancer cells to move away from tumors and spread cancer to other parts of the body, according to Tina Izard, Ph.D., assistant member in the Department of Hematology-Oncology. Izard led the research team and is the first and senior author of a report on this work.

The discovery of how vinculin changes its shape holds promise for developing new ways to prevent the spread of cancer cells. The milestone discoveries of changes in the shape and function of vinculin illustrate the versatility of some proteins and help explain how the enormous complexity of the human body can arise from a mere 30,000 to 40,000 genes, according to Philippe R.J. Bois, Ph.D., a Van Vleet Foundation fellow in the St. Jude Department of Genetics.

"It was already known that cells can read certain genes in different ways to make different proteins," Bois said. "But these new findings significantly enhance our appreciation of the scope of protein function in the cell."

The researchers used X-ray crystallography to generate information on the shape of vinculin in its inactive and active forms. Izard’s team shot X-rays at crystalline forms of human vinculin and collected the patterns formed when the X-rays diffracted off the different parts of the protein. The researchers created these patterns using the X-ray crystallography facility at the Argonne National Laboratory (Argonne, Ill.). Diffraction patterns form when X-rays are diffracted by a crystal. The vinculin diffraction patterns underwent computer processing using software developed at Global Phasing Limited, a company in Cambridge, England.

Vinculin’s ability to alter its shape to meet the demands of a task stems from the series of gracefully curling segments--each one of which is called a helix---that makes up much of the structure of this protein.

"Vinculin resembles a series of cylinders held together by threads," Izard said.

Vinculin changes its shape by moving the individual helical "cylinders" making up its head–much like the movement of the fingers on a hand--in a process called helical bundle conversion. This process, which the team discovered, occurs after one of two different proteins binds to the head.

The team demonstrated that when a protein called talin binds to vinculin’s head, the head undergoes helical bundle conversion and the helices assume new positions relative to each other, according to Izard. The new shape of the head is critical to vinculin’s ability to help the cell anchor itself to the environment outside its membrane--an area called the "extracellular matrix." This keeps the cell in one spot so it does not drift away.

However, when the protein called á-actinin (alpha-actinin) binds to vinculin’s head, the head acquires a different shape. In this shape, vinculin plays a critical role in stabilizing a chain of molecules called cadherin. This extends through the cell membrane and binds with cadherin chains from neighboring cells. The connection, similar to a chain-linked fence, permits cells to bind together into sheets, and thus form tissues and organs.

Together, talin and á-actinin help vinculin build tissues and organs out of individual cells by keeping cells in one spot.

"But when vinculin shifts from active to inactive form and back again, the cell can perform other tasks as well," Izard said. For example, such a shift lets many cells move from their original location to take up positions elsewhere in the developing body where new tissues and organs are destined to arise.

"In other words, vinculin is a critical protein that performs different roles in the body," Boise said. "It is a master conductor of much of the cell’s life, changing its shape to conduct the cell’s business according to the cell’s immediate needs."

Other authors of the study include Robert A. Borgon and Christina L. Rush (St. Jude and the University of Tennessee) and Gwyndaf Evans and Gerard Bricogne (Global Phasing Limited, Cambridge, England).



This work was supported in part by the Cancer Center Support (CORE) Grant and ALSAC.

St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tennessee, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fundraising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>