Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancers’ love-hate relationship with proteins offers new treatment window

18.12.2003


Scientists at Washington University School of Medicine in St. Louis have found that the absence of two proteins cells use to cope with heat stress can make it easier for the cells to become cancerous, but that same absence also makes it harder for cancerous cells to survive exposure to heat and radiation.



The findings mark the two proteins, Heat shock protein (Hsp) 70.1 and 70.3, as potential targets for gene therapy that could increase cancer cells’ vulnerability to treatments.

"This is the first time we’ve linked these proteins to the cancer cell’s response to ionizing radiation," says Tej Pandita, Ph.D., assistant professor of radiation oncology and lead investigator of the new study. "Understanding the pathobiology of the genes that make these proteins -- how they function in normal circumstances and how they work in an unusual context like the cancer cell -- will help radiation oncologists devise gene therapy protocols that enhance cell kill from radiation treatments."


The findings will appear in the second January 2004 issue of Molecular and Cellular Biology (volume 24, issue 2), which will be available online on Dec. 28.

All cancers are caused to some degree by loss of genetic stability, according to Pandita. Genetic instability provides a chance for regulation of cell growth, cell division or other important processes to slip out of control, allowing a cancer to get its start. But too much genetic instability, a potential risk during the rapid and repeated cell division that is a hallmark of cancer, can increase vulnerability to stress and the chance that cells will self-destruct.

Pandita studies telomerase, an enzyme that helps maintain the telomeres, structures at the ends of chromosomes. Healthy cells normally only make telomerase when they’re preparing to divide and need the enzyme to stabilize the telomeres in preparation for replication of the genetic material. In cancerous cells, though, telomerase is present all the time.

Pandita began studying the Hsp 70.1 and 70.3 proteins because other scientists had revealed that they could act as chaperones for telomerase.

"Chaperone proteins interact with other proteins, helping to fold or unfold them, which helps activate their function; in other cases, they help deactivate and degrade the proteins they interact with," he explains. "To see what effect the heat shock proteins have on telomerase, we created a line of mice, in which the genes for the proteins were knocked out."

Cells lacking the proteins were close to becoming cancerous. Ends of chromosomes in the modified cells were more likely to become associated with each other, indicating the chromosomes’ telomeres probably were degraded. Telomerase normally contributes to the repair of this degradation and the mending of other genetic instability.

To get a more detailed sense of how vulnerable the cells had become, Pandita’s team exposed them to radiation and to heat followed by radiation. In test tube studies and in the genetically engineered mice, the heat followed by radiation killed more cancer cells.

If methods can be developed for blocking the creation of the Hsp proteins or for blocking their effects on telomerase, Pandita says, this result suggests that heat treatment followed by radiation treatment might produce the greatest benefits for cancer patients.


Hunt CR, Dix DJ, Sharma GG, Pandita RK, Gupta A, Funk M, Pandita RJ. Genomic instability and enhanced radiosensitivity in Hsp 70.1/3-deficient mice. Molecular and Cellular Biology, January 2004 (volume 24, issue 2).

Funding from the National Institutes of Health, the Department of the Army, Washington University School of Medicine Division of Radiation Oncology and the Environmental Protection Agency supported this research.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | WUSTL School of Medicine
Further information:
http://aladdin.wustl.edu/medadmin/PAnews.nsf/news/C5E08D5A18C4516586256DFF006D59D3?OpenDocument
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>