Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocking selected neurotransmitter activity may decrease alcohol consumption

15.12.2003


  • Neuropeptide Y (NPY) is a neurotransmitter that is integral to neurobiological functions such as anxiety, pain, memory and feeding behaviors.



  • Researchers have found that a compound that blocks NPY activity decreases both the onset as well as the repetition of alcohol consumption.

  • These findings have important implications for the treatment of both alcohol abuse and dependence.

Peptides are a class of neurotransmitters, chemicals used by brain cells to communicate with each other. Neuropeptide Y (NPY) is the most abundant and widely distributed peptide, and is involved in a variety of neurobiological functions, including anxiety, pain, memory, and feeding behavior. Although previous animal research has implicated NPY systems in alcohol abuse and alcoholism, findings published in the December issue of Alcoholism: Clinical & Experimental Research are the first to show that a compound that blocks NPY activity may be useful for alcohol treatment.


"NPY is the most potent stimulant of feeding behavior known," explained Clyde W. Hodge, associate professor in the departments of psychiatry and pharmacology at the University of North Carolina at Chapel Hill and corresponding author for the study. "For example, the primary brain region involved in control of eating is the hypothalamus. Animal studies have shown that repeated treatment of the hypothalamus with NPY produces dietary obesity in otherwise normal rats. We suspect that alcohol may usurp brain systems that evolved to perform other functions, such as eating, because these neural systems evolved long before humans discovered alcoholic beverages. Alcohol and drug abuse, therefore, can be considered disorders of consumption."

"Since NPY is a signal molecule, it produces its effects via several NPY receptors in the brain, such as the NPY-Y5 receptors," added Subhash C. Pandey, associate professor and director of Neuroscience Alcoholism Research in the department of psychiatry at the University of Illinois at Chicago. "This research suggests that alcohol-preferring mice may have higher levels of NPY-Y5 receptors in the brain. Other research suggests that these mice have lower NPY levels in the brain area involved in reward of alcohol drinking. It is also possible that both lower NPY levels and higher NPY-Y5 receptors in the brain may be associated with the excessive alcohol drinking behaviors of these mice."

This study uses alcohol-preferring mice called C57BL/6 to examine the effects of the NPY-Y5 receptor antagonist L-152,804 on the onset and maintenance of alcohol self-administration.

"Most of the known compounds that target NPY receptors do not cross the blood-brain barrier," said Hodge. "L-152,804, however, is a novel compound that was recently shown to both cross the blood-brain barrier and block NPY-Y5 receptors."

Researchers housed 59 male C57BL/6J mice in standard Plexiglas cages (4 per cage) with food and water always available. Mice were trained to self-administer either alcohol (10% v/v) or water during 16-hour sessions. After four months, the mice were injected systemically with L-152,804 (0, 10, 30 or 60 mg/kg) prior to the sessions.

Results indicate that not only does L-152,804 delay the onset of alcohol self-administration, which is considered an index of relapse potential, but it also seems to reduce the reinforcing, or rewarding, effects of alcohol.

"The process by which drug self-administration behavior becomes repetitive is called positive reinforcement," said Hodge. "It reflects the tendency of all animals, human and non-human, to repeat responses that produce a desired outcome. In general, this process functions to sustain behavior that is essential to the individual or species, such as eating, drinking or reproduction. In this particular case, L-152,804 appeared to block the reinforcing effects of alcohol. When taken together, these results suggest that L-152,804 might reduce the motivation to start drinking as well as decrease the amount of alcohol consumed. Thus, L-152,804 might make relapse less likely and possibly dampen its consequences.

Both Hodge and Pandey said these results have clear implications for the medical management of alcohol abuse and alcoholism.

"If these studies are replicable and consistently produce findings that alcohol preference and dependence are associated with increased NPY-Y5 receptors in the brain," said Pandey, "then blocking these receptors with L-152, 804 may be useful in treating alcoholism. Furthermore, since this receptor antagonist is able to delay the onset of alcohol-drinking behaviors in alcohol-preferring mice, it also has potential in preventing relapse to alcohol abuse."

"Approved medications for alcoholism such as naltrexone," added Hodge, "may help prevent relapse but do not decrease drinking by chronic alcoholics who are actively drinking. L-152,804 has the potential to both prevent relapse and decrease active drinking. When you also consider the fact that L-152,804 can be administered orally, we believe that medications that block NPY actions at its receptors have great potential for the medical management of alcoholism."


Alcoholism: Clinical & Experimental Research (ACER) is the official journal of the Research Society on Alcoholism and the International Society for Biomedical Research on Alcoholism. Co-authors of the ACER paper included Jason P. Schroeder and Kimberly A. Iller of the Department of Psychiatry and Bowles Center for Alcohol Studies at the University of North Carolina at Chapel Hill. The study was funded by the National Institute on Alcohol Abuse and Alcoholism, the State of California, and the Bowles Center for Alcohol Studies at the University of North Carolina at Chapel Hill.

Clyde W. Hodge | EurekAlert!
Further information:
http://www.alcoholism-cer.com/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>