Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EU BIONIC EAR research project looks into new ways to cure deafness

12.12.2003


Results from the EU-funded BIONIC EAR project will be presented by the European Commission at this year’s annual meeting of the American Society for Cell Biology (ASCB). The meeting opens tonight in San Francisco



The European Union is funding the 4-year BIONIC EAR project with €1.53 million out of a total budget of €2.77 million . BIONIC EAR looks into ways of repairing the inner ear whose hair cells are damaged by trauma, antibiotics or ageing, thus resulting in an irreversible hearing impairment, which affects more than 10 percent of the population. Project partners include the Université de Montpellier II (France), Stockholm’s Karolinska Institute (Sweden), the Institute of Neuroscience of the “Centro Nazionale Ricerche” (CNR) in Milan (Italy) and the Ecole Polytechnique Fédérale de Lausanne (Switzerland).

The French and Swedish researchers in particular have identified and isolated “progenitor” or adult stem cells from vestibular sensory epithelia (VSE) in mice, which could be differentiated into new sensory hair cells. Electronic stimulation of these cells, connected to the brain, could also help tackle deafness in humans.


“Every year, one European out of ten becomes deaf due to inner ear damage,” says European Research Commissioner Philippe Busquin. “This can be avoided, and the findings of the BIONIC EAR project are very promising. However, more research is needed to prove that these newly differentiated hair cells could efficiently replace damaged elements of the human inner ear. If existing self-repair mechanisms could be enhanced or damaged hair cells be repaired with the help of adult stem cells, we could greatly contribute to the fight against hearing and balance impairments that severely disable so many people. The recognition of the potential of this research by the US and the international scientific community demonstrates that we are at the forefront in this and other scientific fields, and that European excellence paves the way to innovative cutting-edge research.”

EU research at the top

The 1340 projects submitted to this year’s ASCB were "peer-screened" by a specialised committee, and the BIONIC EAR project was included in a short list of top projects to be presented during the event. The research on the sensory hair-cell part of BIONIC EAR was carried out by Dr. Eric Scarfone’s CNRS laboratory at the Université de Montpellier II and by Dr. Mats Ulfendahl at the Karolinska Institute in Stockholm. The laboratory of Prof. Jonas Frisén, also at the Karolinska Institute, is bringing its expertise on adult stem cells to this part of the project, which also comprises three other European laboratories.

Wanted: stem cells in peripheral nervous system

For many years it has been thought that sensory hair cells and their connecting neurons could not be replaced. But growing reports on novel stem cell populations in the central nervous system have prompted European researchers within the BIONIC EAR project to look for stem cells in the inner ears of adult mice.

Repair mechanisms in the inner ear

The BIONIC EAR project aims at investigating new approaches to repair the inner ear. The project had previously shown that damaged connections between hair cells and sensory neurons of the inner ear could be repaired in vitro. The successful identification of stem cells in the inner ear of mice marks a new milestone in this project, which runs until the end of 2004. Together, these results demonstrate the potential for self-repair of the adult mammalian inner ear.

Fixing the damage

Researchers are now trying to turn the knowledge gained during the first 3 years of the project into therapeutic applications, by combining cell therapy (encapsulation in a three-dimensional (3D) polymer matrix of genetically engineered cells) and cochlear implants (an electronic device that directly stimulates the sensory neurons of the inner ear) in an animal model of pathological deafness.

High regenerative potential

The finding of a regenerative potential of adult mammalian inner ear hair cells and of their connections to the brain opens up a new, significant possibility for rehabilitation of sensory handicap linked to peripheral inner ear damage: the stimulation of existing self repair mechanisms. Much is left to learn about the factors that trigger and instruct these mechanisms before they can be put into practical use, and this is bound to become a major line of study.

Annual Meeting "Cell Biology 2003"

The 43rd Annual Meeting of the American Society for Cell Biology (ASCB) will be held between 13 and 17 December at the Moscone Convention Center in San Francisco. It will attract around 8 000 international cell biologists and about 50 science journalists who report on most recent progress in the field of cell biology world-wide.

Michael Wappelhorst | European Commission
Further information:
http://www.ascb.org/meetings/am2003/program.html

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>