Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic develops new technology to improve diagnosis of arm and hand injuries and disease

12.12.2003


IBM collaborated on the industrial design and is manufacturing the new medical device



Mayo Clinic today announced it has developed a series of magnetic resonance imaging (MRI) devices that make it easier to diagnose injuries and diseases that affect wrists, forearms, elbows, hands and fingers. Mayo has obtained FDA approval to market and commercialize these devices, making them available to other medical centers nationwide.

Named Mayo Clinic BC-10 MRI Coils, these devices are highly sophisticated units used in taking detailed pictures of a particular part of the body. They produce high resolution images at 1.5 and 3 Tesla. Tesla indicates the strength of the main magnetic field used in MR imaging. High resolution images improve a physician’s ability to see small structures such as tiny ligaments and nerves in the hand. This means more accurate diagnosis of injuries and diseases, and in some cases, eliminates the need for invasive diagnostic procedures such as arthroscopy, the visual examination of the interior of a joint with a special surgical instrument.


"Accurate diagnosis is the critical forerunner to effective medical treatment, which is why Mayo focused on improving the diagnostic capabilities of magnetic imaging," says Kimberly Amrami, M.D., a radiologist at Mayo Clinic in Rochester.

This is the first of a series of MRI coils Mayo is developing to improve the accuracy and thoroughness of imaging diagnoses. Mayo Clinic worked with IBM industrial design engineers to optimize the functionality for the benefit of both the medical technician and the patient. Some of the design changes IBM orchestrated brought quick reward, such as adding windows to the sides of the device that enable technicians to better view and align patient anatomy within the coil.

"This effort represents years of medical research and a great collaboration between a team of Mayo clinicians and IBM engineers, and we look forward to a continued collaboration, including developing more designs with the goal of improving patient care," says Samuel Prabhakar, director of system solutions, IBM Engineering & Technology Services.

Mayo has been using these coils clinically for three years to diagnose cartilage degeneration, nerve compression, ligament injuries, tendon abnormalities, tumor detection, bone injuries and scarring within the wrist.

"The level of detail and resolution we are now obtaining has allowed for more definitive diagnosis based upon imaging -- something we have been previously cautious about stating," says Richard Berger, M.D., Ph.D., orthopedic surgeon at Mayo Clinic.

In June 2002, the journal Radiology published results from a comparative study in which six healthy volunteers had MRI scans with both the Mayo Clinic MRI Coil and three other designs for wrist scanning. A blinded review of the images by five Mayo Clinic radiologists and one medical physicist indicated a preference for the images created using Mayo Clinic Coil in the majority of the comparisons.

The coils are being manufactured by IBM in Rochester, Minn., and will be available to other medical centers in early 2004. Revenue Mayo receives from this device will be used to support Mayo’s clinical practice, medical research and education activities. Medical centers interested in acquiring the coil may call Mayo Medical Ventures, 507-284-8878, for more information.



B-roll of coil in use available upon request.

Additional Contact
Cary Ziter
IBM Engineering & Technology Services
845-892-5005

Suzanne Leaf-Brock | EurekAlert!
Further information:
http://www.mayo.edu/
http://mayoresearch.mayo.edu/mayo/research/innovative.cfm

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>