Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origin of multiple myeloma found in rare stem cell

04.12.2003


Johns Hopkins Kimmel Cancer Center scientists have identified the cell likely to be responsible for the development of multiple myeloma, a cancer of the bone marrow that destroys bone tissue. The research, published in Blood online, suggests that therapies designed for long-term cure of the disease should target this stem cell, which, unlike other cells, can copy itself and differentiate into one or more specialized cell types.

In their studies to learn why multiple myeloma so often recurs following drug treatment, the investigators uncovered a rare stem cell , occurring in just one out of every 10,000 cells or less than one percent of all myeloma cells.

Working with immune system B-cells, the Johns Hopkins team found that this stem cell gives rise to the malignant bone marrow plasma cells characterized by multiple myeloma.



Current treatments target the malignant plasma cells but may not be effective on the errant multiple myeloma stem cells, allowing the cancer to recur. "Most therapies today are aimed at the cancer you can see, but to cure cancer you have to go after the cells responsible for the disease, similar to how we kill a weed by getting at its roots, not just the part above the ground," explains Richard Jones, M.D., professor and director of bone marrow transplant at the Johns Hopkins Kimmel Cancer Center. "If you cut off the flower and stem of a dandelion, it may look like it has died for a period of time, but the weed eventually will grow back. If you get the root, however, the weed does not grow back."

The scientists found the rare stem cell by looking at markers on the surface of damaged B-cells, which develop into plasma cells that cannot divide and multiply. "We know what the markers are on cancerous plasma cells and the antibodies they make, and we also know the markers on B-cells that are not cancerous. So, we went looking for a B-cell that has the same antibodies, can make copies of itself and mature into cancerous plasma cells," says William Matsui, M.D., assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

They found that this multiple myeloma stem cell looks and acts genetically different from the plasma cell.

"Because these two cells are biologically different, we may need two therapies – one to kill the plasma cells, or the visible part of the weed; and one to kill the root – the stem cells," says Matsui. "Treatments that are directed at myeloma plasma cells are likely to produce visible results, but they will be temporary improvements unless we also target the myeloma stem cell."

Therapies for myeloma undergoing study at the Johns Hopkins Kimmel Cancer Center include antibodies that target the stem cells and drugs to make them age prematurely. Cancer stem cells have been found as the culprit in chronic myeloid leukemia, and the scientists believe the same pattern of cancer development may apply to other cancers, including breast cancer, acute myeloid leukemia and acute lymphocytic leukemia.

Multiple myeloma is the second most common blood cancer and strikes more than 14,000 Americans each year. Close to 11,000 will die from the disease.


This research was funded by the National Cancer Institute.

Other participants in this research include Carol Ann Huff, Qiuju Wang, Matthew T. Malehorn, James Barber, Yvette Tanhehco, B. Douglas Smith, and Curt I. Civin from the Johns Hopkins Kimmel Cancer Center.

Vanessa Wasta | EurekAlert!
Further information:
http://www.hopkinsmedicine.org

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>