Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CT scans find tiny bladder, kidney & urinary cancers

01.12.2003


Scan finds problems often missed by other tests, helps high-risk patients get help early



A single 15-minute CT scan may be all it takes to find tiny cancers, stones and other problems in the kidneys, bladders and urinary tracts of high-risk patients -- potentially saving them from many additional tests, and from delayed detection and treatment. And the detailed imaging scan can be done using modern CT (computed tomography) machines now found in many large hospitals.

That’s the message that University of Michigan Health System radiologists will give this week at the annual meeting of the Radiological Society of North America, where they will present new findings on multi-detector CT urography, or MDCTU.


As one of the most experienced MDCTU teams in the nation, with more than 1,000 patients scanned, they hope to show colleagues from around the nation that the technique is extremely sensitive, very accurate and relatively easy to adopt.

At the meeting, U-M radiologists Elaine Caoili, M.D., and Richard H. Cohan, M.D., will showcase their findings that MDCTU can find numerous problems in the tiny vessels of the body’s urine collection system, as well as detecting bladder cancer, kidney and bladder stones, and kidney cysts and cancers.

And, they will show how MDCTU may be a better and far more accurate option for high-risk patients than the traditional 30-minute X-ray exam that is often done on patients with symptoms such as blood in their urine or problems with urination.

That exam, known as intravenous pyelogram (IVP) or intravenous urography (IVU), finds the cause of symptoms less than 50 percent of the time. And IVP’s high false-positive and false-negative rates often mean that high-risk patients either endure a series of tests and scans before getting a firm diagnosis, or get a false sense of security from a mistakenly "clean" report and only get diagnosed much later.

"Our experience to date with MDCTU in patients with prior bladder and urinary tract cancer has convinced us that it is as good as IVP -- and probably far better -- for detecting all abnormalities of the urinary system," says Cohan, a professor of radiology at the U-M Medical School.

"We’re able to see subtle tumors as small as 2 to 3 millimeters, in areas where other exams can’t go, and we’ve been able to save patients the delay and aggravation of coming back for repeated diagnostic scans and procedures," adds Caoili, a clinical assistant professor of radiology whose RSNA Research Scholar award helped fund the research. "We hope our colleagues will adopt this technique for use in patients in whom they strongly suspect urinary abnormalities, such as those with prior cancer."

Cohan will give a course on MDCTU at the RSNA meeting, along with several other leading national investigators from Brigham and Women’s Hospital, the University of Pennsylvania and the Mayo Clinic. He will also give a course on kidney imaging, including MDCTU. Meanwhile, Caoili will present a poster of research results, and a computerized educational display that will teach radiologists how to conduct and interpret the scans.

MDCTU scans can be done on super-fast helical CT scanners, which pass X-rays through the patient’s body from many angles and collect them on the other side using multiple detectors surrounding the patient. During the scan, the path of the X-rays is slightly altered by a contrast dye given to the patient intravenously. The dye works its way through the bloodstream into the kidneys, where it is excreted as part of the urine into tiny vessels within the kidneys and then into the thin, 12-inch-long tubes called ureters that lead to the bladder.

The contrast dye allows the CT scanner to make detailed images of the patient’s entire urinary system, in "slices" less than a millimeter thick. Computers combine them to make cross-sections and three-dimensional images that can be looked at in different ways to spot problems such as cancer.

More than 91,000 Americans are diagnosed with urinary system cancers each year, according to the American Cancer Society, and 25,000 die of those cancers. Most of those diagnosed have bladder or kidney cancer, while a smaller number have cancer in one or both ureters. Men are three times more likely than women to develop urinary system cancers. Smokers, people over age 60, and people exposed to certain industrial chemicals, are also far more likely to develop these cancers.

Caoili’s poster at the RSNA meeting will show how MDCTU can be optimized to give the most accurate result for imaging the ureters and nearby vessels, using data collected from 85 patients scanned at the U-M. The data show that MDCTU images can be optimized by delaying the scan of the ureters and bladder a few minutes longer after the kidneys are imaged, and by giving an intravenous dose of saline solution to make the ureter more opaque and therefore easier to see.

These two improvements, combined with the U-M team’s four years of experience in collecting and analyzing the images produced by MDCTU, have made the technique the standard initial diagnostic tool for U-M patients with a history of urinary system cancer who have new symptoms or are being monitored for recurrence. At U-M, radiologists work with urologists from the Michigan Urology Center, including James Montie, M.D., and Gary Faerber, M.D., to determine which patients are most likely to benefit from an MDCTU scan.

Together, they have diagnosed more than 70 cases of cancer in the past two years, often in patients whose tumors were so small or so far up the urinary tract that they might not have been found by other means until they grew much larger. The team published results from 65 patients in the journal Radiology in February 2002, showing a 93 percent detection rate for all urinary system cancers.

Now, the U-M team hopes that by sharing their methods, they can help other teams begin to perform MDCTU at their own institutions. Many hospitals have already been using CT to find kidney stones and cancers, because of past studies that detected 98 percent of these larger problems, but most have not used MDCTU to image the entire urinary system as a replacement for IVU.

Although MDCTU scans require more expensive imaging and computer equipment, and more detailed and time-consuming reading by radiologists, than IVP, MDCTU may be a more complete and thorough test. IVP often leads to additional imaging tests such as CT.

Says Caoili, "We hope that MDCTU can become the first and only imaging test used for evaluating high-risk patients with urinary system symptoms, and that it will soon allow patients everywhere to get accurate early diagnoses that might improve their outcomes."


References: RSNA scientific poster 317GU-p; Radiology, Vol. 222, No. 2, pp. 353-360

Note: Patients with a history of urinary system cancer who would like to be considered for an MDCTU scan at the University of Michigan may call the U-M Cancer Answer Line at 1-800-865-1125.

Kara Gavin | EurekAlert!
Further information:
http://www2.med.umich.edu/prmc/media/relarch.cfm

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>