Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson scientists find radiation and blood vessel inhibitor more effective against brain tumors

20.11.2003


Combining radiation with an agent that blocks VEGF, a protein that promotes the development of blood vessels and the growth of cancerous tumors – a process known as angiogenesis – may be more effective against brain tumors than either treatment alone, researchers at Jefferson Medical College have found.



Scientists led by Phyllis Wachsberger, Ph.D., assistant professor of radiation oncology at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Adam Dicker, M.D., associate professor of radiation oncology at Jefferson Medical College, looked at whether adding radiation changed the effectiveness of a drug called VEGF Trap on the growth of a common brain tumor, glioblastoma, in a mouse model. VEGF Trap is a protein engineered to block VEGF activity. The particular type of brain tumor expresses high levels of VEGF and is resistant to treatment with many other antiangiogenic drugs.

According to Dr. Dicker, who is also director of the Division of Experimental Radiation Oncology at Jefferson’s Kimmel Cancer Center, the findings indicate that radiation may in many cases substantially enhance the drug’s anti-tumor activity. In fact, research results from Jefferson and other laboratories indicate that VEGF Trap may be as much as 1,000 times more potent in controlling cancerous tumor growth than angiogenesis inhibitors now under review by the Food and Drug Administration, he says.


Dr. Wachsberger presents the group’s work November 19 at the AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics in Boston.

“These are the first studies showing a potential benefit of this agent and radiation,” Dr. Dicker says.

The scientists compared the effects of both small and large doses of VEGF Trap on tumor growth in mice that either had or didn’t have radiation treatments. In the study, radiation alone delayed tumor growth for 10 days more than control mice, to which no treatment had been given. Radiation plus low-dose VEGF Trap increased the growth delay by 20 to 25 days more than the control. High-dose VEGF Trap did even better, adding an extra 40 days of growth delay, though in this case the researchers didn’t see any benefit from adding radiation.

Next, says Dr. Dicker, the Jefferson group hopes to refine the use of radiation with VEGF Trap, including getting a better idea of specific doses and their timing and effectiveness.

Regeneron Pharmaceuticals, Inc., in Tarrytown, NY, funded the research

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17289

More articles from Health and Medicine:

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>