Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein biomarkers accurately and quickly diagnose ALS, find Pittsburgh researchers

17.11.2003


Proteomic signature for ALS identified



Detection of protein abnormalities in cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS) may allow physicians to more rapidly diagnose and better monitor drug efficacy in clinical trials for the disease, according to a novel study presented by a University of Pittsburgh researcher in Milan, Italy, today.

These findings may lead to the first test for early stage ALS, also know as Lou Gehrig’s disease.


The study, presented by Robert Bowser, Ph.D., of the University of Pittsburgh School of Medicine at the 11th annual meeting of the International Alliance of ALS/MND Associations and 14th International Symposium on ALS/MND, identified ALS-specific biomarkers by protein profiling of cerebrospinal fluid from 25 ALS patients and 35 control subjects.

"There are no known diagnostic biomarkers for ALS and no sensitive methods to determine whether a particular drug is working in an ALS patient, nor any way to best test drug combinations for effectiveness," said Dr. Bowser, who is associate professor of pathology and director of the ALS Tissue Bank at the University of Pittsburgh School of Medicine. "A panel of biomarkers would not only be useful in a more rapid diagnosis of ALS, but also would be a valuable tool to evaluate drug efficacy in clinical trials. Protein profiling may also identify biochemical pathways leading to cell death and new therapeutic targets."

CSF samples were obtained from recently diagnosed ALS patients and control subjects who did not have ALS. Some control subjects had no neurologic symptoms, while others had neurological diseases (including four with peripheral neuropathies, one with myopathy, one with probable Alzheimer’s, one with demyelinating disorder, one with meningitis and one with autoimmune sensory motor axonopathy). CSF was used because it is in close contact with motor neurons and brain cells called glia affected by ALS and therefore may harbor high concentrations of diagnostic biomarkers.

Using mass spectrometry to characterize protein peaks that exhibit statistically significant alterations between ALS patients and the control groups, Dr. Bowser and his colleagues identified protein biomarkers that diagnose ALS with near 100 percent specificity and sensitivity.

"Not only will a CSF-based test lead to faster diagnosis, it will permit physicians to monitor the patient during drug treatment and determine whether any of the protein abnormalities that have occurred in the patient have been reduced due to drug treatment. By monitoring the biomarkers, we will be able to directly monitor drug efficacy. By using data from multiple clinical trials, we can determine the best drug combination to offer ALS patients," Dr. Bowser said.

"This research is at the forefront of ALS research. Our next step is to confirm our results with a larger patient population and further evaluate how the biomarker signature pattern changes during disease progression," he said.


The International Symposium on ALS/MND brings together leading international scientists, clinicians and health and social care professionals to present and debate key innovations in their respective fields. The symposium is planned as two parallel meetings, one on biomedical science and the other on research and advances in the care and management of people affected by ALS/MND.

Dr. Bowser’s research is in collaboration with investigators at Massachusetts General Hospital/ Harvard.

ALS is a fatal neurodegenerative disease that attacks nerve cells and pathways in the brain and spinal cord. When cells die, voluntary muscle control and movement is lost. Those patients in the later stages of the disease are totally paralyzed even though their minds remain alert. The average life expectancy of a person with ALS is between two to five years from time of diagnosis.

Frank Raczkiewicz | EurekAlert!
Further information:
http://www.upmc.edu/

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>