Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas bubbles are taken under control

17.11.2003


The system developed by the Moscow scientists with the financial assistance of the Russian Foundation for Basic Research and the Foundation for Assistance to Small Innovative Enterprises will instantly allow to detect and measure gas micro-bubbles being formed in blood inside the pump oxygenator. A small device which looks like some kind of a bracelet on the arterial line of the pump oxygenator and is connected to the computer will be recording all bubbles, searching for potentially dangerous ones and will ensure the timely opportunity to get rid of them.



A patient on the operating table is exposed to numerous risks, especially if the operation is so complex, that extracorporeal circulation is required. One of the dangers is a risk of embolism by a gas bubble, which may occur in the process of blood circulation in the pump oxygenator. It is not always clear why the gas bubbles originate, but they do almost in all the cases. The smaller ones, less than 10 microns in diameter are not particularly dangerous, as they quite rapidly dissolve by themselves. As for bigger bubbles, they may plug in a vessel like a cork, thus disrupting normal blood circulation and causing very bad problems for the organism.

In order to avoid such consequences, it is necessary to trace all the bubbles formed in a pump oxygenator, detect the biggest ones as the most dangerous and get rid of them. The matter is that it has only been possible so far to apply a qualitative approach to this problem, but the scientists have not had any clue to solving it at the quantitative level - to detect gas bubbles in blood and to determine their number and size. In other words, the scientists were unable to distribute the bubbles by size.


However, this problem can soon be solved due to the effort of the scientists from the Moscow research-and-production company ‘BIOSS’. They developed a special system of detecting micro-bubbles on the arterial line of the pump oxygenator to perform extracorporeal circulation.

It consists of several parts. The core of the device is an electronic unit with the ultrasonic detector, which reminds a bracelet, but is very intelligent. Its action is based on the Doppler effect – the fact that the frequency of oscillation or the radiation wave length is changing when re-echoed from a moving object. Omitting technical details, the essence is that the generator creates a continuous ultrasonic wave, it is reflected from the bubbles and the detector, in its turn, catches the echoed signal.

Then an analog-to-digital converter ‘translates’ the assisted signal into the computer language, making the signal digital and then it is further transmitted to the data processing, storage and display unit. This way it is possible to display at any time a bar chart at the PC screen, showing how many gas bubbles are moving in blood flow inside the pump oxygenator and to evaluate their sizes.

So far, there has been built only one test copy of this remarkable device. The developers are currently testing it on a special calibration test bench. The device was especially developed and built for the purpose of creating gas bubbles of the predetermined size in the liquid imitating blood. First, it was necessary to calibrate the system, and the scientists did not have the standard. They had to develop it separately.

The system successfully underwent the first tests both at the test bench and at the real pump oxygenator. “Our system has demonstrated all the capabilities we expected to get”, said Tengiz Mosidze, the project manager and leading engineer. It quickly records gas bubbles ranging from 10 to 400 microns in diameter and accurately determines their sizes. We still need to perform medical tests. Currently, we are developing the algorithm of the computer program which will allow to analyze the situation and evaluate the probability of embolism. And for the future project we have plans to develop a system capable not only to detect dangerous bubbles in blood, but also to remove them automatically.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht Hepatitis: liver failure attributable to compromised blood supply
19.12.2018 | Technische Universität München

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>