Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-engineered valves give diseased hearts new life

12.11.2003


American Heart Association meeting report



Heart valves engineered from patients’ own tissue may offer a new treatment for valvular heart disease, researchers reported today at the American Heart Association’s Scientific Sessions 2003.

"Using this tissue-engineered valve overcomes many of the problems with mechanical or donor valves because it is a living structure from the patient’s own tissue, and so it does not cause an immunological reaction," said Pascal M. Dohmen, M.D., head of tissue engineering research and staff surgeon of the department of cardiovascular surgery at Charité Hospital in Berlin, Germany.


Dohmen and colleagues presented data on the first 23 patients to receive tissue-engineered pulmonary valves in the heart.

The patients, whose average age was 44, had aortic valve disease. The aortic valve connects the heart’s left ventricle with the aorta, the main artery that distributes blood throughout the body. A diseased valve may either open or close improperly, and pressure can build in the ventricle, injuring the heart.

Doctors can treat the condition with drugs or by surgically replacing the patient’s aortic valve with a donor valve, a mechanical valve or the patient’s pulmonary valve. The pulmonary valve is between the right ventricle and the pulmonary artery. In a surgical "swap" called the Ross procedure, the abnormal aortic valve is replaced with the pulmonary valve, and the pulmonary valve is replaced with a donor valve.

Dohmen and colleagues engineered a new pulmonary valve from the patients’ own cells. They implanted the patients’ healthy pulmonary valve into the aortic position. Then they implanted the tissue-engineered valve in the right ventricular outflow tract, where the pulmonary valve originally was.

With up to three years of follow-up, the engineered valve’s performance was "excellent," Dohmen reported. Echocardiography showed that the valves were functioning normally; the valve leaflets or flaps appeared smooth and pliable and showed no signs of calcification.

The patients were discharged from the hospital earlier, and were in better condition than other patients. They had no post-operative fever, which is often found in patients receiving donor heart valves, Dohmen said. Furthermore, the recovery time was shorter.

To engineer the new valve leaflets, the investigators extracted a small portion of vein from the patients’ leg or arm. Then they grew endothelial cells from the vein on a donor valve scaffold in the laboratory. The scaffold had been stripped of cells, leaving only an elastin and collagen matrix for binding the patients’ cells.

"In animal studies, we have seen that this matrix or scaffold will be absorbed by the body," Dohmen said. "In the mean time, the patient’s cells will form a new scaffold. After about a year, the matrix is of the patients’ own material.

"The problem until now was to reconstruct the right ventricular outflow tract," he said. "You cannot do this with regular animal (pig) or human donor valves because they will calcify early or degenerate soon after implantation, especially in patients under the age of 60."

Dohmen limits the use of the tissue-engineered valves to adults up to 60 years of age, but plans to explore the growth potential of the valves, with the hope of using them in children with congenital heart disease.

The heart valve scaffold technique is still considered experimental, he said.


Co-authors are Simon Dushe, Alexander Lembcke, Dietmar Kivelitz, Holger Hotz and Wolfgang F. Konertz.

Carole Bullock | EurekAlert!
Further information:
http://www.americanheart.org/

More articles from Health and Medicine:

nachricht UIC researchers find unique organ-specific signature profiles for blood vessel cells
18.02.2020 | University of Illinois at Chicago

nachricht Remdesivir prevents MERS coronavirus disease in monkeys
14.02.2020 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Movement of a liquid droplet generates over 5 volts of electricity

18.02.2020 | Power and Electrical Engineering

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor

18.02.2020 | Information Technology

Studying electrons, bridging two realms of physics: connecting solids and soft matter

18.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>