Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Repetitive work tasks linked to bone damage

11.11.2003


While experts disagree on whether work tasks alone can be the exact cause of work-related musculoskeletal disorders (WMSD) such as carpal tunnel syndrome, a new study by researchers at Temple University proves that a highly repetitive work task, a risk factor for WMSD, does in fact cause bone damage.



"Because multiple factors play a role in the development of WMSD, including work tasks, home activities, and medical conditions such as diabetes or heart disease, we studied work tasks alone to isolate their impact," said Ann Barr, P.T., Ph.D., associate professor of physical therapy at Temple University and the study’s lead author. "This information is critical in helping industry and medicine establish workplace guidelines to prevent WMSD."

The study, "Repetitive, Negligible Force Reaching in Rats Induces Pathological Overloading of Upper Extremity Bones," published in the November 11 issue of the Journal of Bone and Mineral Research, is the third in a series conducted by a group of researchers at Temple University’s College of Health Professions and School of Medicine. "Our studies have shown a direct relationship between repetitive, low force movement and the inflammation of muscles, bone, nerves and connective tissue typical of WMSD," said Barr.


Work-related musculoskeletal disorders, including carpal tunnel syndrome, osteoarthritis and tendonitis, make up the majority (65 percent) of all occupational illnesses and cost industry tens of billions of dollars each year.

To show how the tissue damage caused symptoms of WMSDs, the researchers analyzed behaviors in rats such as decreased movement performance and task avoidance. "These behaviors increased according to the rate of repetition. The higher the repetition, the more severe the symptoms," said Barr.

While the researchers were not surprised by the nature of the tissue damage or the resulting behaviors, they were surprised by how early it began. "Carpal tunnel syndrome usually takes a long time to develop, yet we started seeing evidence of tissue damage within 3-6 weeks. This finding suggests that we may be able to intervene earlier in the development of the disorder and prevent further, more severe damage," said Barr.

Currently, the group is studying the effects of increasing or decreasing repetitive tasks on both tissue and behavior. They have also begun to determine markers of inflammation in patients with known WMSD.

"Future work will examine the long term effects of repetitive motion and the power of ergonomics or medication in preventing or lessening tissue damage," said Barr.

This research is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIH), the National Institute of Occupational Safety and Health (CDC), the Foundation for Physical Therapy and Temple University.

In addition to Barr, the research team includes faculty members at Temple University’s College of Health Professions and School of Medicine: Mary Barbe, Ph.D., associate professor of physical therapy; Brian Clark, Ph.D., assistant professor of physical therapy; Steven Popoff, Ph.D., professor and chair of anatomy and cell biology; and Fayez Safadi, Ph.D., assistant professor of anatomy and cell biology.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Health and Medicine:

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

nachricht Narcolepsy, scientists unmask the culprit of an enigmatic disease
20.09.2018 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>