Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps scientists link ozone to atherosclerosis

07.11.2003


Detection of toxic ’atheronal’ molecules may lead to new diagnostics

A team of investigators led by The Scripps Research Institute (TSRI) President Richard A. Lerner, M.D., and TSRI Associate Professor Paul Wentworth, Jr., Ph.D., are reporting evidence for the production of ozone in fatty atherosclerotic plaques taken from diseased arteries.

Lerner is Lita Annenberg Hazen Professor of Immunochemistry and holds the Cecil H. and Ida M. Green Chair in Chemistry at TSRI. He is also one of several scientists on the team who are members of The Skaggs Institute for Chemical Biology at TSRI.



Lerner, Wentworth, and their colleagues have been looking at the production of ozone molecules within the human body for the last year and a half, ever since they made the completely unexpected discovery that human antibodies generate a product with the chemical signature of ozone. Ozone is a highly reactive molecule that has never before been considered part of biology.

So if antibodies produce ozone in the human body, the TSRI scientists asked, what is the ozone doing there? Their report, out in this week’s issue of the journal Science, details what they found.

In their report, Lerner, Wentworth, and their colleagues describe how ozone can trigger pathological changes in other molecules in the body, like cholesterol, which ozone breaks down to produce toxic compounds. The scientists describe two such compounds, which they call the "atheronals." These atheronals were found in atherosclerotic plaques that were surgically removed from patients with atherosclerosis.

The scientists suggest these newly identified products are critical to the pathogenesis of atherosclerosis because they are toxic to white blood cells, smooth muscle cells, and cells from the arterial walls--all the major types of cells in and around atherosclerotic plaques. Furthermore, they suggest that atheronals and similar products of ozonolysis may contribute to a number of other diseases, such as lupus, multiple sclerosis, and rheumatoid arthritis.

"Ozone is damaging, and it is really a problem that we are going to have to think about in the next few years," says Wentworth. "There may be a whole slew of molecules that ozone generates that we have never thought about before."

Finally, Lerner, Wentworth, and their colleagues detail how one of the atheronals was found in the blood of patients who have late-stage atherosclerosis, but not in healthy individuals. This suggests that the presence of atheronals may be a good indicator of late-stage arterial inflammation--perhaps the basis for a diagnostic test for atherosclerosis.

Currently, physicians use other risk factors to identify a patient’s risk: elevated cholesterol, hypertension, diabetes, smoking, obesity and a family history of vascular disease at an age less than 55. These indicators are not always reliable, and there is a substantial fraction of patients who develop atherosclerosis without displaying these risk factors.

Sensitive diagnostic markers that would allow early identification of patients at risk of life-threatening atherosclerosis would be a boon to preventative medicine.

Atherosclerosis and Ozone

Atherosclerosis is a common vascular disease that increases the risk of heart attacks and strokes. In fact, heart disease is the most common cause of death in the United States. The Centers for Disease Control and Prevention statistics for 2000 list 878,471 deaths from heart disease and stroke, followed by 553,091 for cancer.

The name of the disease comes from the Greek athero (which means gruel or paste) and sclerosis (which means hardness). And, as the name implies, it is a disease that is characterized by a hardening of the arteries over time due to the buildup of hard plaques--fibrous tissue, calcium, fat, cholesterol, proteins, cells, and other materials--on the inner "endothelial" walls of an artery. These plaques feel something like cartilage to the touch, which explains why atherosclerosis is commonly called hardening of the arteries.

Over the last few years, evidence has been accumulating that the process of atherosclerosis has a significant inflammatory component. Given this evidence, Lerner, Wentworth and their colleagues thought they would look at tissue involved in the disease for evidence of ozone.

Ozone is a particularly reactive form of oxygen that exists naturally as a trace gas in the atmosphere, constituting on average fewer than one part per million air molecules. The gas plays a crucial role in protecting life on earth from damaging solar radiation by concentrating in the upper reaches of Earth’s stratosphere--about 25 kilometers above the surface--and absorbing ultraviolet radiation. Ozone is also a familiar component of air in industrial and urban settings where the highly reactive gas is a hazardous component of smog in the summer months.

A few years ago, Lerner and Wentworth made the completely unexpected discovery that ozone is involved in human biology.

Lerner and Wentworth realized that atherosclerotic plaques have all the ingredients needed to make ozone. They contain white blood cells, which have the ability to generate the singlet oxygen that the antibodies need to produce ozone--and plenty of antibodies passing by in the blood stream.

Ozone Present in Atherosclerotic Plaques

Last year, Lerner and Wentworth approached Giacomo DeLaria, M.D., who is a vascular surgeon at nearby Scripps Clinic, and asked if they could obtain samples of carotid atherosclerotic plaques. DeLaria provided a sample of plaque material from a patient who recently underwent an endarterectomy, generously enabling Wentworth, Lerner, and their colleagues to perform their studies. Endarterectomies are common surgical procedures to remove plaques from the inner walls of atherosclerotic arteries.

"These are specimens we normally just inspect and throw away," says DeLaria, who is a coauthor of the study. "Within themselves, they have no diagnostic value, and they don’t change what we do after the procedure."

Wentworth and Lerner tested this sample, and the results proved promising. They found some abnormalities that could be associated with the presence of ozone in these plaques. But they wanted to be sure. So DeLaria and his fellow vascular surgeon Ralph Dilley, M.D., provided several more samples.

When Lerner, Wentworth, and their colleagues studied the atherosclerotic plaque samples, they found the evidence they were looking for. The atheronals--signature products that were produced when the highly reactive ozone mixed with cholesterol--were evident in the plaques. This suggests that ozone production occurred as these plaques were being formed.

Jason Bardi | EurekAlert!
Further information:
http://www.sciencemag.org

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>