Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New form of Alzheimer’s disease discovered

04.11.2003


According to Professor Matti Haltia, a new form of the hereditary disorder Alzheimer’s disease, which paralyses the lower extremities of its victims, has been discovered in Finland. This disease has since also been discovered in many other countries. The disorder is caused by a new type of genetic defect, which leads to the accumulation of cotton-wool plaque in the cerebral cortex. These cotton-wool plaques lack the traditional Alzheimer plaques, i.e. an amyloid core. This discovery is altering the understanding of how Alzheimer’s disease is formed. Haltia’s research was part of the Academy of Finland’s Research Programme on Ageing. Genetic research was conducted in co-operation with American professor John Hardy, who was the first to discover the genetic defect that causes Alzheimer’s disease in 1991.

Professor Haltia and his research group have shown that Alzheimer’s disease is even more common among people over 85 years of age than previously thought. Furthermore, the research found that a certain form of the LPL protein protects against cerebral infarction. This represents the first known common hereditary factor related to cerebral infarction.

Haltia’s group research has also proven that the ’Pohjoinen’ epilepsy discovered in the Kainuu region of Finland is a new NCL disease. The genetic defect that causes the disease was identified by the research group headed by Professor Anna-Elina Lehesjoki. Even in Finland, NCL diseases are some of the most common hereditary brain disorders among children. They lead to the accumulation of lipofuscin (ageing pigment) type material in nerve cells and the destruction of nerve cells. In this sense they may serve as models of ageing.



Professor Hilkka Soininen was the director of the Ageing Research Programme, which studied mild cognitive impairment (MCI), which is a preliminary stage of Alzheimer’s disease. MCI has attracted interest as an intermediary stage between normal ageing and Alzheimer’s disease. Approximately 10% of those suffering from MCI develop Alzheimer’s disease every year.

The project looked at factors, which predict the transformation of MCI into Alzheimer’s disease. It also examined the connection of lifestyle and cardiovascular disorder risk factors with MCI and the costs incurred by MCI. The study found that a high cholesterol levels and high blood pressure in middle age is a risk factor for developing Alzheimer’s disease in old age, and that high cholesterol levels in middle age is also a risk factor for developing MCI.

The research of hereditary degenerative brain disorders helps in identifying the genes, which are also crucial to the normal function of the brain. Identifying defects in these genes allows for the simple and reliable diagnosis of these disorders. Genetic defects and hereditary risk factors also help in understanding the formation of the disorder at the molecular level. This is a prerequisite for the development of effective medications.

The Ageing Research Programme was conducted during the period 2000-2002. The programme consisted of 21 research projects from 12 universities and research institutes, and employed nearly 200 researchers. The project fields ranged from medicine to social sciences, pedagogics and architecture. The total programme budget was EUR 3.4 million, EUR 2.4 million of which was funded by the Academy. Other programme funders were the Ministry of Social Affairs and Health, Finnish Work Environment Fund, Social Insurance Institution of Finland (KELA), Ministry of Education, Ministry of the Environment and the Association of Finnish Local and Regional Authorities.

The purpose of the research programme was to use research to help society face the challenges that come with ageing. One key goal was to bring different scientific disciplines together to work toward solving the problems associated with ageing. The success of the programme was measured in terms of scientific and social relevance. An international evaluation panel felt that the co-operation of different scientific fields was extremely important. In the group’s opinion three years was far too short a time to effectively complete multidisciplinary research projects.

The Academy of Finland intends to support and promote ageing research in the future. Next year, the Academy will participate in an extensive European ageing research co-operative funding network, which is being funded by the European Union.

Anita Westerback | alfa
Further information:
http://www.aka.fi/eng

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Simple and Fast Method for Radiolabelling Antibodies against Breast Cancer

23.04.2019 | Life Sciences

Quantum gas turns supersolid

23.04.2019 | Physics and Astronomy

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>