Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JAK2 enzyme helps protect brain cells, wreaks havoc on blood vessels

27.10.2003


How the same enzyme helps protect brain cells from the destruction of Alzheimer’s yet contributes to the blood vessel disease of diabetics is a puzzle Dr. Mario B. Marrero wants to solve.


Dr. Mario B. Marrero is studying an enzyme that helps protect brain cells from destruction but wreaks havoc on the blood vessels of diabetics.



"I call JAK2 the good, the bad and the ugly because its function depends on the cell type and where it acts," says the biochemist at the Medical College of Georgia who wants to eliminate – or at least control – the "bad" and "ugly."

JAK2, or janus kinase 2, is an enzyme found in all cells that plays an important role in development and growth; mice lacking this enzyme die in utero, Dr. Marrero says. After birth, the enzyme becomes a two-edged sword that activates or deactivates other proteins and plays a role in Alzheimer’s, diabetes, hypertension and kidney failure.


When JAK2 is good, it helps protect brain cells from Alzheimer’s disease by blocking the action of amyloid-b peptide, the plaque-producing protein fragment implicated in Alzheimer’s disease.

Nicotine, long known to have a neuro-protective role despite its other drawbacks, apparently uses JAK2 to enable this protection. "When brain cells are exposed to beta amyloid that makes plaque, nicotine protects them by activating JAK2, which activates a pathway of cell survival and blocks the beta activation of the pathway that leads to cell death," says Dr. Marrero, who discovered nicotine’s ability to regulate JAK2 in collaboration with Dr. Merouane Bencherif, vice president of preclinical research at the North Carolina-based pharmaceutical company, Targacept, Inc.

But if angiotensin II – a powerful vasoconstrictor involved in blood pressure regulation and a growth factor as well – is added to the mix, nicotine no longer protects brain cells. "Angiotensin II doesn’t allow JAK2 to be activated by nicotine," Dr. Marrero says.

This finding supports his theory that nicotine protects neurons through the JAK2 pathway but also points toward new treatment approaches for Alzheimer’s and other age-related dementias. One such treatment may be a drug that activates JAK2 in combination with ACE, or angiotensin converting enzyme, inhibitors which block angiotensin II production. ACE inhibitors are widely used to treat high blood pressure and anecdotal evidence indicates that people who take these drugs are less susceptible to Alzheimer’s and other dementias.

"What we are working on is trying to understand these pathways that lead to neuro-protection," says Dr. Marrero. "And how does angiotensin II block that action via JAK2? It may even be that JAK2 plays a role when angiotensin II acts as a growth factor." Dr. Marrero’s work on nicotine neuro-protection and JAK2 was published in the Nov. 22, 2002 issue of The Journal of Biological Chemistry.

His lab is also delineating the "bad" and "ugly" pathways that lead to JAK’s role in cell death and destructive proliferation. Like nicotine, its partner in neuro-protection, JAK2 is bad for blood vessels. When activated, JAK2 attacks blood vessels from the inside and out, prompting suicide of the endothelial cells that comprise the smooth interior through which blood flows and proliferation of the smooth muscle cells that comprise the exterior. The result is diseased, dysfunctional blood vessels.

JAK2 activation also is stimulated by high glucose levels in the body, a hallmark of diabetes, via the polyol pathway, a finding Dr. Marrero’s lab in collaboration with Dr. Carlos Isales, MCG endocrinologist, reported in the Aug. 15, 2003 issue of The Journal of Biological Chemistry. "That is why diabetics have a lot of blood vessel problems, in the aorta and major blood vessels," Dr. Marrero says.

In the face of high glucose, the kidneys are an easy target for JAK2’s detrimental effects, prompting glomeruli mesangial cells to grow and proliferate, thereby clogging the kidneys’ intricate filtering mechanisms, according to his work published in the December 2002 issue of Diabetes. "That is why diabetes is one of the main causes of kidney failure. If you take away high glucose, it doesn’t really happen," the researcher says.

Dr. Marrero is collaborating with Dr. David Pollock, MCG physiologist, to further explore what happens in the kidney in an animal model and with Dr. Patricia Schoenlein, an MCG cancer researcher, to explores JAK2’s apparent interference with some cancer therapies. For example, tamoxifen, an anti-estrogen that prompts breast cancer cell suicide, won’t work in cells containing insulin because insulin apparently activates JAK2, which intervenes. When the researchers add a known JAK inhibitor, AG4-90, tamoxifen works in those cells.

"We are trying to figure out how various compounds might be able to regulate JAK," says Dr. Marrero. "We know nicotine activates it, which is why we are studying it." He wants to find additional compounds that activate or inhibit JAK2 so he can maximize the protective qualities of the enzyme and eliminate its contributions to diseases such as diabetes.

Dr. Marrero recently co-authored the preface of a textbook scheduled for release later this month, "Diabetes and Cardiovascular Disease: Integrating Science and Clinical Medicine," with Dr. David M. Stern, a renowned diabetes and vascular researcher and dean of the MCG School of Medicine. The book is being published by Lippincott Williams & Wilkins, an international publisher of professional health information for physicians, nurses and students headquartered in Philadelphia.


###
Dr. Marrero’s research is funded by the National Institutes of Health, an American Heart Association Established Investigator Award grant and Targacept, Inc.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu/

More articles from Health and Medicine:

nachricht New antibody analysis accelerates rational vaccine design
09.08.2018 | Scripps Research Institute

nachricht Distrust of power influences choice of medical procedures
01.08.2018 | Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>