Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embryonic pathway critical to growth of digestive tract tumors

23.10.2003



The signal, called Hedgehog, tells cells when and where to grow during embryonic development and is turned on in primitive cells, or stem cells, in adult tissues to trigger tissue repair. Researchers at Hopkins and elsewhere have already linked Hedgehog and its signaling pathway to a non-fatal skin cancer (basal cell carcinoma), a deadly lung cancer and the most common childhood brain cancer (medulloblastoma).

"Blocking this signal may one day help treat cancers for which there are currently few or no mechanism-based therapies," says senior author Philip Beachy, Ph.D., professor of molecular biology and genetics in Hopkins’ Institute for Basic Biomedical Sciences and a Howard Hughes Medical Institute investigator. "For right now, the biggest question is whether it will pan out in people."


In experiments with cancer cell lines and tumor samples from patients, the scientists found that Hedgehog’s signal is required for the cancers’ growth. Moreover, a three-week course of a plant-derived chemical called cyclopamine, known to block Hedgehog, killed these cancers when grown in mice, causing no apparent harm to the animals.

"In mice, blocking the Hedgehog signal made the implanted tumors disappear," says the study’s first author, David Berman, M.D., Ph.D., assistant professor of pathology at Hopkins. "It’s been about three and a half months since we stopped the cyclopamine, and still the tumors haven’t returned."

Unfortunately, cyclopamine is unlikely to be useful for patients because there just isn’t enough of it, so the search is on to find Hedgehog blockers that could be made in quantities necessary for human studies, say the researchers.

The researchers checked for Hedgehog activation in cell lines and fresh samples of digestive tract tumors because the gut comes from the same part of the embryo -- the endoderm -- as the lung, says Anirban Maitra, MBBS, assistant professor of pathology. Earlier this year, a team from Hopkins linked Hedgehog activation to small cell lung cancer, providing reason to anticipate Hedgehog’s involvement in a variety of other cancers, notes Berman.

"Because of Hedgehog’s important roles in these tissues during development, we hypothesized that ’reactivation’ of the pathway occurs in adult life during cancer development in these organs," adds Maitra, whose procedure for obtaining fresh samples from surgically removed tumors provided the opportunity to analyze cancers unaltered by years of laboratory growth. "Our studies prove this hypothesis to be true."

The pathway’s link to another batch of cancers support the idea that cancer may arise -- in part -- from abnormal growth of stem cells inside mature organs.

The scientists speculate that primitive cells in the lining of the digestive tract may turn on the normal Hedgehog pathway to repair tissue damaged by long-term exposure to an environmental toxin or irritant, such as excess stomach acid chronically rising into the esophagus.

If the damaging environmental irritant is also carcinogenic, such as tobacco smoke, the chances go up that these long-lived primitive cells eventually may collect the right genetic mutations to trigger cancer development, suggests Beachy.

Authors on the study linking Hedgehog to digestive tract tumors are Berman, Maitra, Beachy, Sunil Karhadkar, Rocio Montes de Oca, Meg Gerstenblith, Antony Parker and James Eshleman of the Johns Hopkins School of Medicine; Kimberly Briggs and Neil Watkins of the Johns Hopkins Kimmel Cancer Center; and Yutaka Shimada of Kyoto University, Japan. The project was funded by the family of Margaret Lee and by grants from the National Institutes of Health.

A related paper, focusing on pancreatic cancer and written by researchers at the University of California at San Francisco and Harvard Medical School, appears in the same issue of the journal.


Under a licensing agreement between Curis Inc. and The Johns Hopkins University, Beachy and the University hold equity in Curis and are entitled to a share of royalties from sales of the products described in this article. Beachy also receives payment and equity for service as a consultant to Curis Inc. The terms of this arrangement are being managed by The Johns Hopkins University in accordance with its conflict of interest policies.

Joanna Downer | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/
http://www.nature.com/nature

More articles from Health and Medicine:

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>