Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopkins researchers discover how nitric oxide prevents blood vessel inflammation

20.10.2003


Johns Hopkins scientists investigating nitric oxide (NO) - the molecular messenger that contributes to body functions as wide-ranging as cell death, new blood vessel growth and erections - have figured out how it can block blood vessel inflammation and prevent clotting, a process that has long stumped biologists.



Reporting in the Oct. 17 issue of the journal Cell, cardiologist Charles J. Lowenstein, M.D., and his team observed that NO has the power to inhibit endothelial cells lining blood vessels from releasing inflammatory substances.

Normally, these cells activate a process called exocytosis (a release of substances) to start inflammation, releasing packets of molecules into the bloodstream that, like tiny hand grenades, explode and discharge compounds that trigger inflammation. NO can move in and target a protein within the endothelial cells, N-ethylmaleimide-Sensitive Factor (NSF), that stops the process from happening by blocking the ability of NSF to push out the molecules.


"Nitric oxide may regulate exocytosis this way in a variety of diseases," says Lowenstein, an associate professor of medicine at Hopkins. "For example, nitric oxide blocks exocytosis from platelets, preventing blood clots; exocytosis from neurons, decreasing neurotoxicity in strokes; and exocystosis from lymphocytes, reducing autoimmune damage."

The Hopkins scientists discovered NO’s protective role in both cells and mice. They added NO to human endothelial cells in culture and discovered that it blocked the release of inflammatory compounds. The researchers then found that platelets stuck to blood vessels more often in mice that could not make NO, compared to normal mice.

The findings already have led Lowenstein’s team to develop a novel drug to block exocytosis, thereby acting as an anti-clotting agent. It is a peptide that blocks exocytosis by a mechanism similar to that of nitric oxide. In laboratory tests in mice, the drug prevented tiny, disk-shaped platelets from sticking and causing blood clots. The therapy has potential to limit the amount of heart muscle damage following heart attack, or to treat people with blood-clotting disorders, Lowenstein says, but clinical trials are still years away.

The study was funded by the National Institutes of Health, the American Heart Association, Hopkins’ Ciccarone Center for the Prevention of Heart Disease, and the John and Cora H. Davis Foundation.

Coauthors were Kenji Matsushita, Craig N. Morrell, Shui-Xiang Yang, Munekazu Yamakuchi, Clare Bao, Makoto Hara, Richard A. Quick, Wangsen Cao, Brian O’Rourke and Jonathan Pevsner of Hopkins; Beatrice Cambien and Denisa D. Wagner of Harvard Medical School, and John M. Lowenstein of Brandeis University.


Matsushita, K. et al, "Nitric Oxide Regulates Exocytosis by S-Nitrosylation of N-ethylmaleimide-Sensitive Factor," Cell, Oct. 17, 2003, Vol. 115, pages 1-20.

Karen Blum | EurekAlert!
Further information:
http://www.hopkinsmedicine.org/cardiology/index.htm
http://www.cell.com/

More articles from Health and Medicine:

nachricht Neutrons produce first direct 3D maps of water during cell membrane fusion
21.09.2018 | DOE/Oak Ridge National Laboratory

nachricht Narcolepsy, scientists unmask the culprit of an enigmatic disease
20.09.2018 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Fraunhofer ISE with over 60 Contributions at the European PV Solar Energy Conference and Exhibition

21.09.2018 | Trade Fair News

558 million-year-old fat reveals earliest known animal

21.09.2018 | Earth Sciences

Neutrons produce first direct 3D maps of water during cell membrane fusion

21.09.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>