Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New teeth implants

16.10.2003


Implants are artificial roots which are used to insert teeth and which nowadays give very good results. Nevertheless, the Inasmet Foundation together with the dental specialist Mikel Maeztu is developing a new treatment for the Donostia company, Lifenova Biomedical. This treatment will help to strengthen the union between implant and bone. It involves implants inserted through ionic implantation.



The aim of the research is to develop new implants for human patients, and so before carrying out the first tests on humans, many previous tests have to be carried out, both at the laboratory level and with animals. To date tests have been carried out with rabbits and dogs and eventually will be carried out on humans.

The problem arises from the fact that not just any material may be implanted into the body. On the material being foreign to the organism, it will be attacked by the immune system. Thus, it is important to use material that will not trigger an immune response, i.e. biocompatible materials. These materials are called biomaterials, and they are ever-increasingly used in medicine.


This biocompatibility is also necessary in the case of dental implants. Titanium is precisely what is used as it is inert and has a very high level of compatibility with human tissues.

But, apart from being accepted by the organism, it is important that the bone cells grow well around the implant. If this does not happen, then the artificial tooth will have little strength.

This is precisely what is being investigated in Inasmet. They are trying to obtain a stronger union between bone and implant. To this end, the implants used are not new but the treatment applied to them is.

With this treatment of osteoblasts, the bone cells strongly bond the titanium, more strongly than with other kinds of treatment. This strong bonding makes the cells and, therefore, the bone, grow over the titanium. In this way the treatment increases the capacity of the human body itself to regenerate.

Finally high-powered microscopes are used to see if the bone has grown around the implant. The electronic microscope, for example, enables the implant-bone union with great clarity; i.e. the situation of each cell growing around the implant can be seen, one by one, and so, in this way, the quality of the new treatment can be inspected.

To date, the treatment has provided good results wilt cells and with animals, all that is needed now is to test trial with humans.

Contact :

ELHUYAR Fundazioa
aitzibera@elhuyar.com
(+34) 943363040

Aitziber Agirre | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=339&hizk=I
http://www.inasmet.es

More articles from Health and Medicine:

nachricht Potential seen for tailoring treatment for acute myeloid leukemia
10.12.2018 | University of Washington Health Sciences/UW Medicine

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>