Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecule expressed early in pregnancy may help patients tolerate transplants

15.10.2003


Transplant surgeon Oscar H. Grandas (left) and reproductive immunologist Anatolij Horuzsko are looking at a molecule expressed early in pregnancy that may provide a better way to help transplanted organs survive.



A molecule expressed in the earliest stages of pregnancy that vanishes when the baby is born seems to keep some cells responsible for directing the immune system in an immature and accepting stage, Medical College of Georgia researchers says.

Their finding that the molecule HLA-G helps make dendritic cells – which work like air-traffic controllers for the immune system – tolerant helps explain how a fetus, with genes from both parents, can avoid rejection by the mother’s immune system.

And it has them optimistic that the natural mechanism could be replicated to help preserve a transplanted heart or kidney.



"These immature dendritic cells can induce suppressor cells that will suppress the immune response," said Dr. Anatolij Horuzsko, reproductive immunologist. He is principal investigator on a $ 1.3 million grant from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health to explore whether this selective immune suppression – which occurs in the placenta where mother and developing baby touch – can help transplant patients avoid rejection without putting them at risk for new infection and disease.

Dr. Horuzsko and his co-investigator Dr. Oscar H. Grandas, transplant surgeon, say it’s a logical pursuit because a fetus is essentially a transplant in which, for nine months, a developing body containing genetically foreign material – the half he gets from his father – often escapes rejection by the mother’s immune system. It’s believed that some lost pregnancies result when, for some reason, localized suppression doesn’t happen.

Amazingly there is evidence that in some transplant patients natural suppression also occurs.

Some of the many questions Drs. Horuzsko and Grandas want to answer are, ’Is the spontaneous suppression mechanism that occurs in some patients the same one that occurs during pregnancy?’ and ’Can they make the suppression happen for all patients?’

Dr. Horuzsko has found that HLA-G binds with the inhibitory receptor on the surface of dendritic cells, leaving the cells, at least for a time, immature and tolerant. In research, published in 2002 in the European Journal of Immunology, he performed skin grafts on transgenic mice which express HLA-G and found some of the dendritic cells oddly changed and nonresponsive, a state which enabled the skin grafts to survive about a month longer than those on normal mice. The human equivalent likely would be much longer since a day in a mouse’s life translates to about a month for a human.

This mechanism provides a targeted escape from the usual rigorous patrol of the immune system. HLA-G is an antigen, which is a substance that gets the attention of the immune system; good antigen matches are desirable between an organ donor and transplant recipient because it reduces the risk of rejection. A fetus and a donated organ have much in common; both logically would be viewed by the immune system as foreign bodies that need elimination because both would have foreign antigens.

"From a transplant point of view, this is a huge problem that we have," Dr. Grandas said. "We don’t know who we need to immunosuppress," he said, referencing studies such as a recent one at the University of Pittsburgh that showed that as many as 70 percent of recipients don’t reject their transplanted organs even though they are on minimal immunosuppressive therapy. "What that is telling me is there are people who reject and people who do not and we don’t know why or how to tell who is who. Those are two big areas I have interest in. One is trying to identify the rejecters versus non-rejecters. The second is how can we modify human or animal dendritic cells in order to induce tolerance then wean transplant recipients from immunosuppression to see if we can prolong graft survival," Dr. Grandas said.

The ability to identify the best matches for patients has improved and the drugs patients take to avoid rejection have as well, Dr. Grandas said of the last 20 years in the transplant field. Ironically the net effect has been that acute rejection rates of grafts, or transplanted organs, have dramatically dropped but many organs are still failing over time.

"Even though the organ is not rejected, they are failing for other reasons," Dr. Grandas said. "Patients get infected and die with a working graft or they develop chronic graft dysfunction," because the drugs given to help the graft survive generally suppress the immune system, leaving patients more vulnerable to infection and disease.

So he collaborates with Dr. Horuzsko to test his findings about HLA-G and immature dendritic cells to see if they can create this scenario in animal models with the goal of eventually moving the work to patients.

In the lab, Dr. Grandas is doing islet cell transplants – which include the insulin-producing beta cells of the pancreas - to cure diabetes in rats. With his new NIH grant, Dr. Horusko is going to use HLA-G to modify the dendritic cells of the donor animal then inject them into the recipient rat before Dr. Grandas does the transplant.

Aware that there are likely other factors involved, he will also remove from the recipient some lymphocytes, cells of the immune system that already are programmed for cuing rejection. Transplant patients already get medication to do the same thing. "We will be giving a double whammy of lymphocytic depletion plus dendritic cell injection," said Dr. Horusko.

One of the many difficulties will be finding the optimal mechanism for inducing the desired, localized suppression. "I believe the future will be injection of a few cells to induce a specific mechanism to create only that and not touch anything else," Dr. Horuzsko said.

Dr. Grandas believes he is correct because patients would get donor-specific dendritic cells with the same antigen makeup as the organ they receive. "So you will have donor-specific induction of inhibitory cells," Dr. Grandas said.

"This is a goal because the patient needs to fight infection and, in this case, the immune system will be ready to do that and be tolerant of the transplant only," Dr. Horuzsko said.

The transplant surgeon noted that the approach other groups in the country are using is total bone marrow transplants in conjunction with organ transplants, which means replacing all components of the immune system plus components for blood production. "We think Dr. Horusko’s approach is a step ahead because you will infuse only a particular subset of cells that have the function we want regulated," Dr. Grandas said.

Toni Baker | EurekAlert!

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>