Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson and Michigan Scientists Identify Gene Defect Behind Muscle-Wasting Disease

13.10.2003


Insights gained from extensive studies in mice may someday lead to treatments for comparable neurodegenerative diseases in humans



Scientists at Jefferson Medical College and the University of Michigan have uncovered a gene defect responsible for a muscle-wasting, neurodegenerative disease in mice known as mnd2. Their results may provide insights into the molecular origins of other such diseases in humans, including Parkinson’s disease.

In an online report on October 8 in the journal Nature, the researchers, led by Emad Alnemri, Ph.D., at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Miriam Meisler, Ph.D., at the University of Michigan in Ann Arbor, showed that a mutation in a single amino acid in the protein Omi/HtrA2 is enough to cause the neuromuscular disease. In mnd2 mice, the amino acid serine is changed to cysteine.


Michigan senior research associate Julie Jones, a member of Dr. Meisler’s research team, discovered the mnd2 mouse model, an inherited neurological disease, in 1990. mnd2 is characterized by an abnormal gait, muscle wasting and early death. To identify the guilty gene, Dr. Meisler’s laboratory used a technique called positional cloning, eventually narrowing the mutation to a small region containing six candidate genes on chromosome 6. To find the specific genetic defect, they determined the nucleotide sequence of these candidate genes and discovered that the mnd2 defect was caused by a “point” mutation in the Omi gene.

Dr. Alnemri had been studying the Omi/HtrA2 protease – an enzyme that cleaves proteins – and its role in programmed cell death. When he located the Omi gene on chromosome 2p13.1 – which happened to correspond to mouse chromosome 6, where the mnd2 locus is found – he suspected that a mutation in the Omi/HtrA2 gene could be behind the mnd2 disease. According to Dr. Alnemri, who is professor of microbiology and immunology at Jefferson Medical College and a member of Jefferson’s Kimmel Cancer Center, Omi/HtrA2 is present in the mitochondria, which generates energy in the cell. Omi regulates apoptosis, or programmed cell death, by binding and cleaving proteins that block the process. He and his co-workers at Jefferson characterized the mutation and discovered that it causes a loss of proteolytic activity of the protein, though the mutant protease can still bind to apoptosis-blocking proteins.

The Jefferson team performed additional tests on both normal and mutant mice cells, revealing that the cells from mutant mice were more sensitive to cellular stresses. They also discovered that mitochondria are defective in these cells as well. “The normal protease helps maintain normal mitochondrial function and is important for maintaining survival of cells in the nervous system,” says Dr. Alnemri.

The finding was surprising, says Dr. Meisler, a professor in the Department of Human Genetics at Michigan, because “Omi had not been thought to be involved in neurological disease. It appears to cause neuronal cell death by impairment of mitochondrial function.” “Interestingly, that same chromosome region in humans has been mapped in certain patients with Parkinson’s disease,” Dr. Alnemri notes. “We tested a few of these Parkinson’s samples but we did not find mutations in Omi. We still don’t know if this gene is mutated in other types of Parkinson’s or different neurodegenerative disorders.”

“Based on the severe neurodegeneration and muscle wasting in the mnd2 mouse, we will now begin to screen DNA samples from patients with related disorders in order to determine the medical impact of mutations in this gene,” says Dr. Meisler. “The prospects for treatment will be improved by accurate diagnosis in affected patients. We will extend the mutation search to the human gene, in order to determine its role in neuromuscular diseases.”

The Omi protein and related proteins are found in all organisms, including bacteria. In the latter, Omi-related proteins function as “molecular sensors” of cellular stresses, Dr. Alnemri says.

“Our next step is to find out whether Omi in humans functions as a sensor of mitochondrial stress and to understand at the molecular level how Omi regulates mitochondrial function,” he says.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17158

More articles from Health and Medicine:

nachricht The genes are not to blame
20.07.2018 | Technische Universität München

nachricht Targeting headaches and tumors with nano-submarines
20.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>