Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson and Michigan Scientists Identify Gene Defect Behind Muscle-Wasting Disease

13.10.2003


Insights gained from extensive studies in mice may someday lead to treatments for comparable neurodegenerative diseases in humans



Scientists at Jefferson Medical College and the University of Michigan have uncovered a gene defect responsible for a muscle-wasting, neurodegenerative disease in mice known as mnd2. Their results may provide insights into the molecular origins of other such diseases in humans, including Parkinson’s disease.

In an online report on October 8 in the journal Nature, the researchers, led by Emad Alnemri, Ph.D., at Jefferson Medical College of Thomas Jefferson University in Philadelphia, and Miriam Meisler, Ph.D., at the University of Michigan in Ann Arbor, showed that a mutation in a single amino acid in the protein Omi/HtrA2 is enough to cause the neuromuscular disease. In mnd2 mice, the amino acid serine is changed to cysteine.


Michigan senior research associate Julie Jones, a member of Dr. Meisler’s research team, discovered the mnd2 mouse model, an inherited neurological disease, in 1990. mnd2 is characterized by an abnormal gait, muscle wasting and early death. To identify the guilty gene, Dr. Meisler’s laboratory used a technique called positional cloning, eventually narrowing the mutation to a small region containing six candidate genes on chromosome 6. To find the specific genetic defect, they determined the nucleotide sequence of these candidate genes and discovered that the mnd2 defect was caused by a “point” mutation in the Omi gene.

Dr. Alnemri had been studying the Omi/HtrA2 protease – an enzyme that cleaves proteins – and its role in programmed cell death. When he located the Omi gene on chromosome 2p13.1 – which happened to correspond to mouse chromosome 6, where the mnd2 locus is found – he suspected that a mutation in the Omi/HtrA2 gene could be behind the mnd2 disease. According to Dr. Alnemri, who is professor of microbiology and immunology at Jefferson Medical College and a member of Jefferson’s Kimmel Cancer Center, Omi/HtrA2 is present in the mitochondria, which generates energy in the cell. Omi regulates apoptosis, or programmed cell death, by binding and cleaving proteins that block the process. He and his co-workers at Jefferson characterized the mutation and discovered that it causes a loss of proteolytic activity of the protein, though the mutant protease can still bind to apoptosis-blocking proteins.

The Jefferson team performed additional tests on both normal and mutant mice cells, revealing that the cells from mutant mice were more sensitive to cellular stresses. They also discovered that mitochondria are defective in these cells as well. “The normal protease helps maintain normal mitochondrial function and is important for maintaining survival of cells in the nervous system,” says Dr. Alnemri.

The finding was surprising, says Dr. Meisler, a professor in the Department of Human Genetics at Michigan, because “Omi had not been thought to be involved in neurological disease. It appears to cause neuronal cell death by impairment of mitochondrial function.” “Interestingly, that same chromosome region in humans has been mapped in certain patients with Parkinson’s disease,” Dr. Alnemri notes. “We tested a few of these Parkinson’s samples but we did not find mutations in Omi. We still don’t know if this gene is mutated in other types of Parkinson’s or different neurodegenerative disorders.”

“Based on the severe neurodegeneration and muscle wasting in the mnd2 mouse, we will now begin to screen DNA samples from patients with related disorders in order to determine the medical impact of mutations in this gene,” says Dr. Meisler. “The prospects for treatment will be improved by accurate diagnosis in affected patients. We will extend the mutation search to the human gene, in order to determine its role in neuromuscular diseases.”

The Omi protein and related proteins are found in all organisms, including bacteria. In the latter, Omi-related proteins function as “molecular sensors” of cellular stresses, Dr. Alnemri says.

“Our next step is to find out whether Omi in humans functions as a sensor of mitochondrial stress and to understand at the molecular level how Omi regulates mitochondrial function,” he says.

Steven Benowitz | TJUH
Further information:
http://www.jeffersonhospital.org/news/e3front.dll?durki=17158

More articles from Health and Medicine:

nachricht Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis
22.02.2019 | Children's National Health System

nachricht Researchers find trigger that turns strep infections into flesh-eating disease
19.02.2019 | Houston Methodist

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>