Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar coupled to protein causes kidneys to save water

10.10.2003



Giel Hendriks discovered that the linking of sugars to the protein aquaporin-2 (AQP2) is necessary for the transport of water channels to the cell surfaces in the kidneys. If the protein is not linked to a sugar, it still forms functional water channels. However, these channels no longer end up at the cell surface where they need to do their work.

Kidneys extract water containing dissolved waste substances from the blood. Each day human kidneys produced about 180 litres of this so-called pro-urine. The excretion of all of this fluid would rapidly result in dehydration and eventual death. Therefore with the help of the water channels, the body returns about 99% of this water from the pro-urine to the kidney tissue. As a result of this a person only loses about 1.5 litres of urine per day.


The protein aquaporin-2 regulates a significant part of this water reuse. This protein forms water channels. These are transported from small storage vesicles to the cell surface, where they can collect the water and return it to the kidney tissue.

Mutations in AQP2 give rise to the disease nephrogenic diabetes insipidus (NDI). Patients with this disease lose 15 to 20 litres of urine per day. Knowing how AQP2 is transported to the cell surface and how it works there, is a prerequisite for developing a treatment for this disease.

In addition to the effect of sugars, Hendriks also studied the role of the small signalling protein ubiquitin in the functioning of AQP2. Ubiquitin ensures the breakdown of proteins and is important for quality control during the production of new proteins. Hendriks isolated AQP2 proteins to which a single ubiquitin was bound. Separating the proteins on the cell surface from those inside the cell revealed that only AQP2 with a single ubiquitin is located on the cell surface. The role of this coupling in the functioning of the protein will be investigated in a follow-up study by the Utrecht group.

Finally, the researchers isolated a new protein from a mouse kidney, AQP2-BP that directly binds to AQP2. Up until now no proteins capable of binding to AQP2 were known. By inserting both proteins in kidney cells, Hendriks discovered that AQP2-BP is important for the production of the useful protein AQP2.

Sonja Jacobs | alfa
Further information:
http://www.nwo.nl

More articles from Health and Medicine:

nachricht A new method of tooth repair? Scientists uncover mechanisms to inform future treatment
09.08.2019 | University of Plymouth

nachricht Take a break! Brain stimulation improves motor learning
08.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>