Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetics of blindness

09.10.2003


Treatment for the most common inherited cause of blindness, retinitis pigmentosa, is one step closer, according to investigators at the Research Institute of the McGill University Health Centre (MUHC). They are the first to link two new gene mutations in two French-Canadian families to loss of vision in humans. Their findings are published in this month’s issue of the American Journal of Ophthalmology. This project was funded by the Canadian Institutes of Health Research (CIHR), le Fonds de la recherche en santé du Québec (FRSQ) and the Foundation Fighting Blindness - Canada.

Approximately 1.5 million people worldwide are affected by retinitis pigmentosa, which at the moment has no cure. This disease causes vision loss by progressive degeneration and death of the cells that make up the retina, the portion of the eye that responds to light.

"Retinitis pigmentosa is a devastating and complex disease," says principal investigator, Dr. Robert Koenekoop, director of pediatric ophthalmology at the Montreal Children’s Hospital of the MUHC. “Many genes, gene mutations and symptoms are involved. The first steps to developing a treatment are the characterization of all these factors. Important progress has been made by identifying two important gene mutations present in the French-Canadian population.”



Koenekoop in collaboration with MUHC geneticist, Dr. Guy Rouleau, examined two very large French-Canadian families afflicted with retinitis pigmentosa for four generations. Ophthalmic evaluations and genetic analysis were used to characterize the gene mutations and the resulting phenotype. They demonstrated that these mutations resulted in variable, severe forms of the disease and in some cases other neurological disorders, such as hearing loss.

"Our findings show that different gene mutations result in different symptoms of the disease," says Rouleau. "Our study will provide hope to those families who have suffered from this disease for generations and will lead to new screening and diagnostic tests."

"We were fortunate to have the facilities and expertise to make this discovery," concludes Koenekoop. "This project was an excellent example of genetic and ophthalmic cross-disciplinary research."

About the Research Institute of the McGill University Health Centre

The Research Institute of the McGill University Health Centre (MUHC), located in Montreal, Quebec, is Canada’s largest concentration of biomedical and health-care researchers. The institute has over 500 researchers, nearly 650 graduate and post-doctoral students and 306 laboratories devoted to research. The mission of the institute is to facilitate investigator-initiated and discovery-driven research that creates new knowledge. This research is inextricably linked to clinical programs, which provide a bench-to-bedside-to-community continuum. The MUHC research institute is renowned as a world-class research institution that operates at the forefront of new knowledge, innovation, trends, and technologies.

About the Canadian Institutes of Health Research

CIHR is Canada’s premier agency for health research. Its objective is to excel, according to internationally accepted standards of scientific excellence, in the creation of new knowledge and its translation into improved health for Canadians, more effective health services and products, and a strengthened health care system.

For more information, please contact:
Christine Zeindler, MSc
Communications Coordinator (Research)
McGill University Health Centre Communications Services
www.muhc.ca
(514) 934-1934 ext. 36419
pager: (514) 406-1577

Christine Zeindler | EurekAlert!
Further information:
http://www.mcgill.ca/
http://www.muhc.ca

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>