Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Imagining movement of affected limbs aids stroke rehabilitation

08.10.2003


Imagining movement of arms and legs that have been weakened from stroke may facilitate functional recovery of affected limbs, a Northwestern University study has found.



The effects of stroke vary, based on the type of stroke and its severity and location in the brain. The majority of strokes affect one of the brain’s hemispheres, resulting in muscle weakness or paralysis on the opposite side of the body -- a condition known as hemiparesis.

Jennifer A. Stevens and co-researchers at the Feinberg School of Medicine and the Rehabilitation Institute of Chicago used a motor imagery training program for patients with hemiparesis, consisting of imagined wrist movements and mental simulations of reaching and object manipulation making use of a mirror-box apparatus.


An article describing their study appeared in a recent issue of Archives of Physical Medicine and Rehabilitation. The intervention targets the cognitive level of action processing, while its effects may be realized in overt behavioral performance, said Stevens, research assistant professor of physical medicine and rehabilitation at the Feinberg School.

"Actions generated using motor imagery adhere to the same movement rules and constraints that physical movements follow, and the neural network involved in motor imagery and motor execution overlap in areas of the brain concerned with movement," said Stevens. The program consisted of three one-hour sessions for four consecutive weeks. The first task was computer-facilitated motor imagery training, during which time the participant was instructed to explicitly imagine his/her own hand completing a movement just observed on a computer screen.

For the second task, simulating, for example, the left arm moving, the investigators had the participant move the right arm around in the mirror-box workspace, resulting in a reflection of the affected left limb moving about successfully in space. Participants were instructed to "imagine the reflected limb actually is your limb moving about."

Results showed that performance of the affected limb improved after the imagery intervention, indicated by increases in assessment scores and functionality and decreases in movement times.

Stevens and colleagues found that the greatest increases in function generally occurred during the month of intervention, suggesting that the behavioral effects were associated with the actual practice of mental simulation. It also is possible that motor simulation therapy in early stages of recovery -- that is, less than six months -- may increase the degree of this effect, Stevens said.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>