Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic cancer linked to developmental cell signaling pathway

15.09.2003


Finding suggests possible treatment approach for highly lethal disease



Scientists at UCSF and Massachusetts General Hospital (MGH) have found strong evidence that a cell signaling pathway active in embryonic development plays a crucial role in pancreatic cancer. The finding provides the first model of the development and growth of pancreatic cancer and suggests a clear route for treatment of this lethal malignancy. The research is being posted online today by the journal Nature, prior to publication in the print journal.

Pancreatic cancer is the fourth leading cause of cancer deaths in the U.S.; each year 30,000 cases are diagnosed, and for the majority of patients the disease is incurable.


Using human cell lines, the researchers showed that pancreatic cancer growth can be arrested by chemically blocking a signaling pathway that previously had been known to be active in human embryonic development. Known as the Hedgehog pathway, this cascade of chemical steps allows proteins to pass along a signal that ultimately leads to changes in gene activity and has already been linked to several other types of cancer.

The research highlights the link between embryonic development and cancer. Proteins that normally regulate rapid growth in the embryo may often be responsible for the out-of-control cell divisions in cancer, the scientists say.

"Surgery has represented the only possible cure for pancreatic cancer patients," said Sarah P. Thayer, MD, PhD, of MGH, co-first and co-senior author of the paper. "However, the majority of patients are diagnosed at an incurable stage of their disease. We have been stymied by our inability to diagnose patients earlier and offer effective treatments."

Thayer deals principally with the surgical management of pancreatic cancer patients, and the disease is the main focus of her research.

Although much more work needs to be done to determine whether the research can be applied to clinical practice, "identifying the role of this pathway in pancreatic cancer offers hope for developing treatments," said Matthias Hebrok, PhD, assistant professor of medicine in UCSF’s Diabetes Center. "It also underscores how studying organ development in embryos can provide clues to cancer, diabetes and other serious diseases." Hebrok is co-senior author on the paper.

"Our funding of this research emphasizes the importance of understanding the signals and genetic networks that regulate development of the pancreatic cells. These insights will prove relevant for activating beta cell regeneration, and for understanding how beta cell growth is disordered in pancreatic malignancies," said Richard Insel, MD, Vice President, Research, Juvenile Diabetes Research Foundation International.

Normally, Hedgehog proteins influence early development by binding to another protein on the cell surface, known as the Patched receptor. This union triggers a series of chemical changes, leading to gene activity in the nucleus. Mutations in the Hedgehog pathway are known to cause several types of cancer, and this research adds pancreatic cancer to the list of serious outcomes of aberrant Hedgehog activity.

In one part of the study, the scientists compared normal adult human pancreatic tissue to specimens from patients with pancreatic cancer. No Hedgehog protein was detected in the normal tissue, but it was found in 70 percent of precancerous and cancerous specimens. Furthermore, key genes in the Hedgehog pathway were also found to be overexpressed.

"Mis-expression of the Hedgehog pathway in transgenic mice resulted in the formation of abnormal pancreatic cells that resembled human precursor lesions, suggesting that this pathway may have a role in the initiation of this cancer," said Thayer, an instructor in surgery at Harvard Medical School. "However, its true role in pancreatic cancer remains to be determined."

The researchers also examined 26 human pancreatic cancer cell lines and found Hedgehog activity in all of them. When the Hedgehog pathway was blocked experimentally, the cancer was killed half of the time. Cancer-causing mutations "downstream" from the Hedgehog pathway may cause the other half of the cancers, the researchers think. The scientists then transplanted pancreatic cancer cells into mice, creating tumors. They injected the mice with an inhibitor of the Hedgehog pathway, which resulted in a 50 to 60 percent reduction in tumor size after seven days.

The research results -- death of tumor cells both in the Petri dish and in animals --suggest that this may one day hold promise as a treatment avenue, the researchers say.

Unfortunately, the inhibitor used in this research is not a practical drug for clinical use, they point out. But since abnormalities in Hedgehog expression have already been linked to gliomas, basal cell carcinoma and very recently, small cell lung cancer, university and commercial labs are screening for more effective Hedgehog blockers.

"If Hedgehog is involved in pancreatic cancer, these other blockers might offer a bright prospect in treating a disease that has eluded effective treatment up to now," Hebrok said.

A second paper in the same issue of Nature reports that Hedgehog signaling is active in pancreatic and other cancers along the gastrointestinal tract. These results provide further evidence that deregulation of this pathway is a more general phenomenon than previously anticipated.


###
Marina Pasca di Magliano, Ph.D., of the UCSF Diabetes Center, is co-first author on the paper with Thayer. Other UCSF co-authors are graduate students Patrick W. Heiser and Yan Ping Qi, of the Diabetes Center; and Stephan Grysin, PhD, and Martin McMahon, PhD, of the Cancer Research Institute. Co-authors at MGH and HMS are Drucilla Roberts, MD; Gregory Lauwers, MD; Corinne Nielsen, MS; Carlos Fernández-del Castillo, MD, Bozena Antoniu, MS; Vijay Yajnik, MD, Ph.D; and Andrew Warshaw, MD, professor and chair, Department of Surgery.

The research was supported by grants from the Lustgarten Foundation for Pancreatic Cancer Research, the National Institutes of Health, and the Juvenile Diabetes Research Foundation.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>