NIAID launches malaria vaccine trial in Africa

The National Institute of Allergy and Infectious Diseases (NIAID), one of the National Institutes of Health, has reached a milestone in its efforts to support accelerated development of malaria vaccines. Working with an international group of public and private partners, NIAID has launched its first trial of a candidate malaria vaccine in a country where malaria is endemic. The Phase I trial, taking place in Mali, seeks to confirm the safety and immunogenicity in adults of a candidate vaccine called FMP-1.

A key component of the NIAID Plan for Research for Malaria Vaccine Development has been to establish, in malaria-endemic areas, research centers that can support the complex clinical development of malaria vaccines. Conducting a malaria vaccine trial in Africa is important because more than 90 percent of malaria deaths occur in Africa, and the great majority of these deaths are in young children. Each year, malaria infects an estimated 300 to 500 million people worldwide and causes more than 1 million deaths, according to the World Health Organization.

This trial, the first to be conducted by Malian researchers from the Malaria Research and Training Center in the Department of Epidemiology of Parasitic Diseases at the Medical School of the University of Bamako, is taking place in Bandiagara, Mali, with NIAID support. It reflects the result of many years of effort by a group of organizations dedicated to creating an effective malaria vaccine. In addition to NIAID and the University of Bamako, the collaborators include the University of Maryland at Baltimore; NIAID’s Malaria Vaccine Development Unit; the Malian Ministries of Health and Education; the Walter Reed Army Institute of Research (WRAIR); GlaxoSmithKline Biologicals (GSK); the U.S. Agency for International Development (USAID); and the World Health Organization (WHO).

Developed by WRAIR in collaboration with GSK Biologicals, and with support from USAID, the FMP-1 vaccine has already proved safe and immunogenic in two small Phase I and Phase IIa studies in the United States and an additional Phase I study in Kenya. The vaccine contains an experimental adjuvant called AS02A developed by GSK and intended to enhance the immune response.

The trial will enroll 40 adults between the ages of 18 and 55. Half of the volunteers will receive the malaria vaccine and half will serve as a control group by receiving a licensed rabies vaccine. Each volunteer will receive three injections over two months, and the researchers will follow each volunteer for one year, monitoring the long-term safety of the vaccine and analyzing the immune responses against the Plasmodium falciparum malaria parasite.

Media inquiries can be directed to the NIAID OCPL media group at 301-402-1663.

NIAID is a component of the National Institutes of Health (NIH), which is an agency of the Department of Health and Human Services. In addition to malaria research, NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, illness from potential agents of bioterrorism, tuberculosis, autoimmune disorders, asthma and allergies.

Prepared by:
Office of Communications and Public Liaison
National Institute of Allergy and Infectious Diseases
National Institutes of Health
Bethesda, MD 20892

U.S. Department of Health and Human Services

Media Contact

Laurie Doepel EurekAlert!

More Information:

http://www.niaid.nih.gov

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Combatting disruptive ‘noise’ in quantum communication

In a significant milestone for quantum communication technology, an experiment has demonstrated how networks can be leveraged to combat disruptive ‘noise’ in quantum communications. The international effort led by researchers…

Stretchable quantum dot display

Intrinsically stretchable quantum dot-based light-emitting diodes achieved record-breaking performance. A team of South Korean scientists led by Professor KIM Dae-Hyeong of the Center for Nanoparticle Research within the Institute for…

Internet can achieve quantum speed with light saved as sound

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic…

Partners & Sponsors