Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New "Gating" Device Improves Imaging of Heart and Lungs

08.09.2003


Magnetic resonance imaging (MRI) of the heart and lungs is a valuable diagnostic tool in the medical industry, but the detailed images it produces are often marred by artefacts (unwanted signals) created by the motion of cardiac and respiratory cycles.



A team of inventors at Oxford University has now developed a method of suppressing MRI artefacts to a negligible level. This has potential to allow more precise conclusions to be made from a small number of experimental trials, with obvious potential within the pharmaceutical industry, both to accelerate research work and to improve the robustness and quality of screening data upon which key project decisions can be made.

Cardiac and thoracic MRI of small animals, such as mice, requires high spatial resolution in order to resolve fine detail. However, MRI is extremely sensitive to motion from the cardiac and respiratory cycles, which cause severe image artefacts. To reduce these artefacts, synchronisation (gating) to these physiological cycles is required.


Successful gating itself, however, can be difficult to achieve:
· Severe interference from the MR gradient system can cause problems in obtaining clean physiological signals from which gating information is derived.
· Once gating information has been derived, a suitable intra-respiratory acquisition window has to be defined which allows ECGs within the window to be used for MRI signal acquisition.
· Physiological rates of small animals can vary due to changes in thermal or pharmacological response; these variations can invalidate the defined acquisition window, hence introducing motion artefacts.
· Unfortunately, using double-gating (i.e. cardiac and respiratory gating) creates another form of image artefact that has to be minimised.

To overcome these problems, the Oxford team has designed a cardiac and respiratory gating device that is immune from gradient system interference, is adaptive and flexible to changes in physiological rates, and minimises relaxation effects. The inventors have developed a prototype of the device that is capable of minimising image artefacts so that the resultant images are clearer, and therefore significantly better for identification purposes than those obtained using existing methods.

Isis Innovation, Oxford University’s technology transfer company, has filed a patent application on the gating device and is actively looking for companies interested in utilising it.

Jennifer Johnson | alfa
Further information:
http://www.isis-innovation.com/licensing/1275.html

More articles from Health and Medicine:

nachricht New flexible, transparent, wearable biopatch, improves cellular observation, drug delivery
12.11.2018 | Purdue University

nachricht Exosomes 'swarm' to protect against bacteria inhaled through the nose
12.11.2018 | Massachusetts Eye and Ear Infirmary

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>