Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cutting with light

04.09.2003


More dentists, patients see benefit of lasers

Until recently, the use of lasers in the dental office was marginalized because of the cost of the equipment and its limited use. Today, manufacturers and dentists believe "cutting with light" will gain a much wider appeal thanks to recent technological leaps and declining costs, according to the August/September 2003 issue of AGD Impact, the monthly newsmagazine of the Academy of General Dentistry (AGD).

Not a day goes by that I don’t use it," Christopher J. Walinski, DDS, a Massachusetts-based laser dentist, says in the Impact article. "We have patients coming in who want to be treated with the laser. I’m the guy with the laser."



Lasers debuted in health care in the 1960s. They made their way into dentistry in the early 1990s. About 5 percent of U.S. practitioners use lasers.

"Basically new technology is the appeal for patients," says Eric Shapira, DDS, MAGD, spokesperson for the AGD. "Patients look for ease of having procedures done without major discomfort."

In addition to the number of soft- and hard-tissue procedures applicable to lasers, advocates say faster healing, improved infection control, reduced postoperative pain and sensitivity, reduced patient anxiety and less need for anesthesia or injections are advantages of the laser.

"Many procedures work without giving an injection, which is less stressful for dentists and patients," says Robert A. Convissar, DDS, FAGD, co-author of a report that will be published in the September/October 2003 issue of General Dentistry, the AGD’s clinical, peer-reviewed journal.

The laser industry, as it pertains to dentistry, is expected to grow. According to some manufacturers, lasers may soon be developed for removal, preventive cavities detection and using different wavelength to vaporize cavities beneath the tooth surface.

Laser Facts
  • "Laser" is an acronym for light amplification by stimulated emission of radiation.
  • A laser is an intense beam of monochromatic light used to do everything from "reading" compact discs to performing surgical operations.
  • Soft-tissue lasers work only on soft tissue, such as gums. Hard-tissue lasers work on tooth and bone.
  • The U.S. Food and Drug Administration has cleared five types of lasers for dental use: the carbon dioxide (CO2) laser, the Neodymium-Yttrium-Aluminum-Garnet (Nd:YAG) laser, the semiconductor diode laser and the erbium series of lasers, the Ebrium-Yttrium-Aluminum-Garnet (Er:YAG) and the Erbium-Chromium-Yttrium-Scallium-Gallium-Garnet (Er,Cr:YSGG).
  • CO2 and Nd:YAG lasers are used for soft tissue procedures, such as lesion removal and frenectomies.
  • Semiconductor diode lasers also perform many of the soft-tissue procedures of those lasers, in addition to bleaching.
  • Erbium lasers work well on soft tissue, but their unique contribution to high-tech dentistry is their ability to perform hard tissue procedures, including cavity removal and root canals.

Susan Urbanczyk | EurekAlert!
Further information:
http://agd.org/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>