Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIEHS study identifies gene for hydrocephalus in mice

22.08.2003


Scientists at the National Institute of Environmental Health Sciences have identified a gene called RFX4 that is responsible for the birth defect hydrocephalus in mice. Loss of a single copy of this gene in mice leads to a failure of drainage of cerebrospinal fluid from the brain cavity, which causes the skull to swell.



About one child in 2,000 worldwide is afflicted by hydrocephalus. Identification of the mouse gene provides a means for researchers to study the possible genetic origins of this common birth defect in humans.

The gene was discovered when researchers noticed that pups in one line of transgenic mice from a completely different study developed head swelling and neurological abnormalities shortly after birth. The NIEHS research team then cloned the defective gene and found that it was responsible for development of a critical structure in the brain that controls cerebrospinal fluid drainage. All of the mice with the defective gene developed the classic symptoms of hydrocephalus, whereas none of the littermates with the normal gene developed this condition. Although the head-swelling led to rapid neurological deterioration and death in many of the transgenic animals, a number have survived to reproduce and propagate the line.


"Animal models of human diseases are often an invaluable tool for studying the underlying causes of a disease, in this case a severe and common birth defect," Darryl C. Zeldin, M.D., one of the authors of the study said. "Identifying the genetic sources of this birth defect in mice may lead to the development of better treatment or prevention of hydrocephalus in humans."

Dr. Zeldin points out that this study is based on the discovery of the mouse gene and its relationship to development of hydrocephalus in mice. The study also describes the cloning of the human homolog of this gene, but the authors cannot say this gene is associated with hydrocephalus in humans yet.

Dr. Zeldin said, "The RFX gene may or may not be associated with hydrocephalus in humans, but that is where we are going in the future with this project. There are likely many causes for hydrocephalus in humans, both genetic and environmental."

"RFX4 belongs to a family of proteins called transcription factors that control expression of other genes," said Perry J. Blackshear, M.D., D.Phil., a co-author of the study. "Identifying exactly which genes are controlled by RFX4 will be an important next step."

The NIEHS researchers have already begun to look for common defects in the RFX4 gene in humans with hydrocephalus. The ultimate goal of these studies will be to develop screening assays to identify this defect so that patients can be counseled appropriately.

The study appears online at http://dev.biologists.org/ on the web site of the scientific journal Development, and will appear in an upcoming print issue. The study is authored by Perry J. Blackshear, M.D., D.Phil. (NIEHS), Joan P. Graves (NIEHS), Deborah J. Stumpo, Ph.D. (NIEHS), Inma Cobos, Ph.D. (University of California at San Francisco), John L.R. Rubenstein, M.D., Ph.D. (University of California at San Francisco) and Darryl C. Zeldin, M.D. (NIEHS).


###
For further information on the study, contact either Dr. Zeldin at 919-541-1169 or Dr. Blackshear at 919-541-4899.


Tom Hawkins | EurekAlert!
Further information:
http://www.niehs.nih.gov/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>