Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants More Vulnerable to Serious Brain Injury From Falling Than Previously Thought

13.08.2003


Babies are more vulnerable to serious head injury during a fall than had been previously thought, according to new research that may also begin to help child abuse investigators distinguish between accidental and intentional injury.



Whitaker investigator Susan Margulies of the University of Pennsylvania found that rotational forces generated by a baby’s head hitting a hard surface can cause widespread, potentially serious brain injury. This can include internal bleeding, which can damage tissue and alter brain function, and nerve cell damage, which can impair thinking, sensation, and other mental functions.

Infant falls are often dismissed as relatively benign because the head is assumed to be moving in a straight line at impact, Margulies said. Linear motions are associated with such localized injuries as skull fractures.


Rotational movements, however, can produce more widespread and serious brain injury. "We found that when the head contacted a firm surface before the body, significant rotational motions were produced," Margulies said. Her study was published in the July issue of the Journal of Neurosurgery.

These findings may also help distinguish between accidental falls and injury sustained by intentionally striking a child’s head against a hard surface, although more research is needed before such results could make a clear difference in abuse investigations.

"Traumatic brain injury is the most common cause of death in childhood, and child abuse is believed to be responsible for at least half of infant brain injuries," Margulies said. "While accidental falls are a frequent cause of pediatric trauma, they are also a common explanation given by caretakers in suspected abuse cases."

Margulies and her colleagues used an infant "crash test dummy" to measure rotational forces, which are rapid changes in velocity as the head contacts a hard surface and then violently rebounds. The lifelike doll resembling a 6-week-old infant is equipped with sensors to measure rotational velocity and acceleration. These forces increase with higher falls and harder surfaces.

The doll was suspended from a scaffold and allowed to fall 134 times from heights of 1, 3 and 5 feet onto surfaces commonly found in a home: a concrete floor, .25-inch-thick carpet padding, and a 4-inch-thick foam pad, simulating a crib mattress. Volunteers also shook the doll vigorously and struck its head against each of the three surfaces.

The 5-foot-fall onto concrete produced enough force to cause serious brain injury, the researchers found. But intentional head strikes onto hard surfaces produced significantly greater force.

"Based on this evidence, our data suggest that inflicted impacts are much more likely than falls or shaking to lead to brain injury," Margulies said. These injuries could include internal bleeding and prolonged or permanent nerve damage.

There has been a widespread assumption that children are the physiological equivalent of miniature adults and are affected similarly in cases of head trauma. But Margulies and others are accumulating evidence that young children do not always respond to trauma the same way adults do.

"Learning more about pediatric brain injuries will help us develop protective devices -- helmets, playground surfaces, car seats -- that better meet their specific needs," she said.

Collaborators include Michael Prange and Brittany Coats of Pennsylvania and Ann-Christine Duhaime of Hitchcock Medical Center in Hanover, N.H. Margulies received a Whitaker Biomedical Engineering Research Grant in 1992 for work in the lung.



Frank Blanchard | The Whitaker Foundation
Further information:
http://www.whitaker.org/news/margulies2.html

More articles from Health and Medicine:

nachricht Scientists find new approach that shows promise for treating cystic fibrosis
14.03.2019 | NIH/National Heart, Lung and Blood Institute

nachricht Lab grown ‘brains’ successfully model disease
13.03.2019 | Max-Planck-Institut für Psychiatrie

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Researchers measure near-perfect performance in low-cost semiconductors

18.03.2019 | Power and Electrical Engineering

Nanocrystal 'factory' could revolutionize quantum dot manufacturing

18.03.2019 | Materials Sciences

Long-distance quantum information exchange -- success at the nanoscale

18.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>