Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune system drug may increase availability of liver transplants

30.07.2003


Animal research at The Johns Hopkins University School of Medicine has found that a drug already approved by the FDA for testing in people might one day dramatically expand the number of livers useable for human transplantation.



Studying rats with fatty livers, the researchers discovered that bathing the livers in a human immune system protein called interleukin-6 (IL-6) rescues them from failure when transplanted into other rats. The findings appear in the July issue of Gastroenterology.

Roughly 40 percent of adults in the United States have so-called "fatty" livers, which frequently fail to function at all or fail quickly when transplanted.


"IL-6 really works," says Zhaoli Sun, M.D., Ph.D., a scientist in the department of surgery. Sun cautions that IL-6’s ability to "rescue" fatty livers for transplantation needs to be tested in larger animals, such as pigs, before human studies are undertaken.

"IL-6 is already approved for use in humans, but it has many negative effects when injected," says Sun. "Fortunately, our technique stores the liver in IL-6 before it’s transplanted, rather than giving IL-6 to the organ recipient, so side effects should be minimized."

For his experiments, Sun developed two special rat colonies while an instructor in the laboratory of Andrew Klein, M.D., in collaboration with Anna Mae Diehl, M.D., a professor of gastroenterology whose research has focused on regeneration -- rather than transplantation -- of fatty liver. In humans, fatty livers generally stem from either diet or alcohol consumption, and the two rat models developed fatty livers under equivalent conditions.

After removing a fatty liver from one animal, and before transplanting it into another, Sun bathed the liver in a soup of nutrients that either did or did not include IL-6. Livers soaked in IL-6 had better blood flow and better function and allowed recipients to live, while fatty livers never exposed to IL-6 succumbed quickly to damage and never worked well enough to save their new hosts.

Sun says it’s not known yet how IL-6 protects the fatty livers from damage or how it improves so-called "microcirculation," which helps prevent large chunks of the liver from dying. But while those questions are interesting scientifically, Klein, director of the Johns Hopkins Comprehensive Transplant Center, says clinical trials won’t need to wait for those answers.

"Eventual clinical trials, if approved, would probably begin by looking for reduced damage or improved function in organs we would already use for transplant," says Klein, who notes that that a generally acceptable cutoff is a liver with no more than 30 percent of cells containing big droplets of fat. "Moving toward livers that currently would be borderline would be a gradual process."

Roughly 17,500 people are awaiting liver transplants in the United States, and 5,327 liver transplantations were performed last year across the country, according to statistics kept by the United Network for Organ Sharing. IL-6 has been administered to people as part of early phase clinical trials in adults and children with various cancers, but was limited by its toxicity.

Joanna Downer | EurekAlert!
Further information:
http://www.gastroenterology.com
http://www.hopkinsmedicine.org/transplant/adult/liver/index.html
http://www.unos.org

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>