Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sequence of human chromosome 7 is fine-tuned and finished

10.07.2003


Researchers at Washington University School of Medicine in St. Louis, in collaboration with investigators at five other centers, have finished sequencing human chromosome 7. The findings are published in the July 10 issue of the journal Nature.



Chromosome 7 is the largest human chromosome to be sequenced so far. The analysis revealed that the chromosome has about 1,150 genes and 940 so-called pseudogenes, stretches of DNA that closely resemble genes but contain some genetic change that prevents them from functioning like a gene. The biological significance of pseudogenes is unknown.

"This work completes another volume in the genome encyclopedia at a high standard of quality and a high degree of continuity," says principal investigator Richard K. Wilson, Ph.D., director of Washington University’s Genome Sequencing Center and professor of genetics and of molecular microbiology. "The sequence for chromosome 7 will be very useful for follow-up studies that have a medical application."


The work may benefit research in cystic fibrosis, deafness, B-cell lymphoma and other cancers, genes for which are found on chromosome 7. Also found there is the gene for P-glycoprotein, a protein that enables cancer cells to resist anticancer drugs. Other important genes found on chromosome 7 include those that help control cell division and cell death, genes for taste and smell receptors and those involved in immune responses.

Chromosome 7 also has a relatively centrally located centromere, a small region found on all chromosomes that is important during cell division. Centromeres on other chromosomes sequenced so far are located near the tip of the chromosome, like a knob. The centromere on chromosome 7 divides the chromosome into a short arm and a long arm, both of which carry many genes. Sequencing proceeded from each end toward the centromere.

The centromere itself contains many short repetitive DNA sequences and few, if any, genes.

"We got in close to the centromere and characterized those repeat sequences for the first time," Wilson says.

The most challenging region of the chromosome to sequence was that containing genes for Williams-Beuren syndrome (WBS), a rare genetic disorder characterized by mild mental retardation, unusual facial appearance and a narrowing of the aorta, the major artery leaving the heart. The WBS region was difficult to decipher because it contains large segments DNA with many duplicated genes, and the number of duplicated genes differs among individuals. Children with WBS are missing long stretches of these duplicated genes.

"It seems that multiple copies of these genes are necessary for normal development, and if any are lost, developmental abnormalities occur," Wilson says. "People who study this disease may find the chromosome 7 sequence data very helpful."

Next, Wilson and his colleagues will resequence certain genes on chromosome 7 from people with acute leukemia to better understand the genetic changes that give rise to the malignancy.


Hillier LW, Fulton RS, Fulton LA. et al. The DNA sequence of human chromosome 7. Nature, July 10, 2003.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Why might reading make myopic?
18.07.2018 | Universitätsklinikum Tübingen

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>