Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study results show promise for development of gene therapy to treat blood diseases

09.07.2003


Researchers have developed a promising new approach for gene therapy of inherited blood disorders that may help overcome therapeutically limiting human stem cell gene transfer efficiency. This method would be applicable to patients with beta-thalassemia, a potentially life-threatening blood disease, as well as other genetic blood disorders, according to a study published in the July 15th issue of Blood. By transplanting beta-thalassemic mice with stem cells treated with MGMT (methylguanine methyltransferase), a drug-resistance gene, researchers were able to subsequently give a chemotherapy drug to the mice, which specifically increased the normal, or globin-expressing cells, to levels that diminished, or in some cases, cured the disease. The transplanted donor stem cells genetically reversed the beta-thalassemia in the mice because the drug-resistant cells assumed production of normal red blood cells in the bone marrow.



"Our finding gives us hope that we might one day be able to help patients with hemoglobin diseases generate healthy blood cells in their own bodies," said Derek Persons, MD, assistant member in the St. Jude Department of Hematology/Oncology, Memphis, TN, and lead author of the paper. "The technique we pioneered will allow us to enrich the population of cells carrying the normal gene by eliminating competing, defective cells, without using radiation or intensive chemotherapy."

Researchers in the study used an oncoretrovirus to transfer MGMT into normal bone marrow cells. The treated cells were then transplanted into beta-thalassemic mice previously given non-myeloablative (non-life-threatening) pre-transplant conditioning with the cytotoxic agents temozolomide (TMZ) and O6-benzylguanine (BG). The transplanted mice were randomly assigned to receive either drug treatment with TMZ/BG (two five-day courses, five weeks apart, beginning seven weeks after transplant) or no treatment.


Researchers achieved successful in vivo (in the body) selection in 66 percent (19 of 29) of the mice. Following treatment with TMZ/BG, the treated mice showed persistent improvement of their blood, suggesting that the modified stem cells assumed the production of red blood cells after the treatment eliminated the defective stem cells. A majority of the mice also showed resolution of anemia with nearly complete, stable conversion to the donor red blood cells.

"Currently, we are unable to transplant an adequate number of genetically altered bone marrow cells into humans to result in successful treatment of these diseases," said Dr. Persons. "We believe that further animal studies will ultimately determine the feasibility of using the MGMT selection process as a treatment."

Beta-thalassemia is an inherited blood disorder that occurs when a person’s red blood cells do not produce enough beta globin protein to result in adequate levels of hemoglobin (the oxygen-carrying component of the red blood cells). The red cells need to produce enough of both the beta globin and alpha globin proteins to ensure that the red blood cells form properly and are able to carry sufficient oxygen. If the body is unable to produce adequate amounts, the result will be anemia that begins in early childhood and lasts throughout a patient’s life. Children with untreated beta-thalassemia may die in the first decade of life if they do not receive adequate treatment.

The most common treatment for beta-thalassemia is red blood cell transfusions, which provide the patient with a temporary supply of healthy cells that function normally and supply the body with the needed oxygen. Patients with a major form of thalassemia receive red blood cell transfusions every two to three weeks, which translates to as many as 52 pints of blood a year. However, the high number of red blood cell transfusions these patients receive can lead to iron overload which, if left untreated, may result in early death from organ failure. Alternatively, some patients may undergo bone marrow transplantation with cells from a matched normal donor. However, this treatment is not available for all patients and entails significant risk. Therefore, new treatment approaches are needed.

"The use of gene-modified stem cells to correct inherited blood diseases has been a very attractive idea, but achieving this goal has been quite difficult. Modifying large numbers of adult hematopoietic stem cells is very difficult, and expanding a small number of successfully modified stem cells in the laboratory has proven even harder. This careful study provides an important example of how basic hematology research can lead to solutions to the problems that remain before gene-modified stem cells can be safely and successfully used in medical therapy," notes Stephen Emerson, MD, PhD, Francis C. Wood Professor in Medicine and Chief of Hematology/Oncology at the University of Pennsylvania.

According to the Cooley’s Anemia Foundation, it is estimated that more than two million people in the United States carry the genetic trait for thalassemia. For this reason, the National Institutes of Health recommend that all US citizens should be tested for the thalassemia trait.


Blood, the Journal of the American Society of Hematology, is the most cited peer-reviewed publication in the field. All articles undergo rigorous peer review and are selected for publication on the basis of the originality and quality of the work described. As a special service to researchers and clinicians, accepted papers are made available online about three months ahead of print as "First Edition Papers." Blood is issued to Society members and other subscribers twice per month, available in print and online at http://www.bloodjournal.org.

Aimee Frank | EurekAlert!
Further information:
http://www.hematology.org/
http://www.bloodjournal.org

More articles from Health and Medicine:

nachricht Protective antibodies identified for rare, polio-like disease in children
06.07.2020 | Purdue University

nachricht Cancer cells make blood vessels drug resistant during chemotherapy
02.07.2020 | Hokkaido University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>