Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HIV eludes body’s smart bomb

08.07.2003


HIV inactivates the body’s cellular smart bomb



HIV eludes one of the body’s key smart bomb defenses against infection, and this finding may lay the groundwork for new drugs to treat AIDS, according to a new Salk Institute study.

Nathaniel Landau, a Salk Institute associate professor, and his team have pinpointed how the body battles HIV, a tremendously complex and relentless virus. Their findings appear in the online issue of Cell and will be published in the July 11 print issue.


"What we have uncovered is a war that is being fought on the molecular level between viruses and cells. The war has been going on for millions of years, but we didn’t know about it until now," said Landau.

"We have been focusing on an antiviral system that we never knew about-a single protein called APOBEC3G. APOBEC3G would be a powerful inhibitor of viruses such as HIV, except for one problem: the virus has outsmarted it. During the evolutionary war between the virus and the host, the virus developed an effective counter-measure."

That counter-measure is a gene in HIV called virion infectivity factor (Vif). In an HIV-infected cell, according to Landau, Vif molecules are produced and then attach to the APOBEC3G protein molecules. Once attached, Vif prevents APOBEC3G from getting into the new viruses, and these viruses go on to replicate and spread throughout the body.

Having identified the interaction between Vif and APOBEC3G, Landau and his team then focused on a fundamental question: would it be possible to beat the virus at its own game?

"We found that mice also have the antiviral protein," said Landau. "But interestingly, HIV can’t recognize the mouse protein. As a result, mouse APOBEC3G is a powerful blocker of HIV replication. The mouse APOBEC3G protein goes into HIV and Vif can’t kick it out."

The mouse APOBEC3G functions like a smart bomb with a time-delayed fuse. When the virus is produced in an infected cell, APOBEC3G molecules get into the virus. At first, the protein does nothing; however, when the virus infects a new cell, APOBEC3G is activated. As HIV begins to copy its genes into DNA, APOBEC3G attacks the virus, creating massive mutations. APOBEC3G attacks the cytosines in the virus DNA, removing an essential chemical group to make them into uracil. The viral DNA is so badly mutated that the viral genes can’t function.

"Drug companies may be able to use this information to design a novel type of drug to treat HIV infection. They could develop drugs that attach to APOBEC3G, physically blocking Vif from attaching. If Vif can’t bind to APOBEC3G, the process of HIV replication could be halted," said Landau.

The lead author of the paper was Roberto Mariani, a staff scientist at the Salk Institute. Co-authors of the paper include Darlene Chen, Bärbel Schröfelbauer, Francisco Navarro, Renate König, Brooke Bollman, Carsten Münk, Henrietta and Nymark-McMahon, all of the Salk Institute. The study was funded by the National Institutes of Health, the Elizabeth Glaser Pediatric AIDS Foundation and Concerned Parents for AIDS Research.


The Salk Institute for Biological Studies, located in La Jolla, Calif., is an independent nonprofit organization dedicated to fundamental discoveries in the life sciences, the improvement of human health and conditions, and the training of future generations of researchers. Jonas Salk, M.D., founded the institute in 1960 with a gift of land from the City of San Diego and the financial support of the March of Dimes Birth Defects Foundation.

Robert Bradford | EurekAlert!
Further information:
http://www.salk.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>