Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rare versions of immune system genes stave off HIV infection

08.07.2003


Researchers have new answers as to why some HIV-infected individuals don’t progress to full-blown AIDS as rapidly as other HIV-positive people.



Northwestern University scientist Steven M. Wolinsky, M.D., and colleagues found that individuals with certain rare variations, or alleles, of two immune system genes -- human leukocyte antigens A and B (HLA-A and HLA-B) -- are better equipped to stave off HIV than people with more common sets of HLA alleles.

This finding indicates that HIV has evolved to attack the most common immune system genes and that there may be differences in how people respond to infection based on their HLA proteins. Importantly, the research, which was published in the July issue of Nature Medicine, showed that HIV influences human immune response just as humans put evolutionary pressure on the virus.


"We’re pushing on the microbe and it’s pushing back on us," Wolinsky said.

The group’s study, which was conducted in 996 HIV-infected men in Chicago component of the Multicenter AIDS Cohort Study (MACS), also has major therapeutic implications for determining the patients who require more aggressive treatment and for developing AIDS vaccines, Wolinsky said.

Wolinsky is the Samuel J. Sackett Professor and chief of infectious disease at the Feinberg School of Medicine and at Northwestern Memorial Hospital. He also is director of the Great Lakes Regional Center for AIDS Research.

HLA molecules help trigger activity of infection-fighting T cells. During the immune response, HLA proteins bind bits of an invading microbe’s proteins in an infected cell, which are then presented on the infected cell’s surface to killer T cells. The killer T cells, also known as cytotoxic T cells, destroy the infected cell and thereby prevent spread of infection.

Importantly, the study demonstrated the first clinical application of a new statistical method, called minimum description length (MDL), that enabled the researchers to analyze the hundreds of HLA-A and HLA-B alleles found in the Chicago HIV study population and classify patients into disease progression groups based on their ability to bind specific microbial proteins. The investigators were then able to associate nine different HLA "supertypes" with disease outcome.

They found that men with the most frequent HLA supertypes had the highest viral loads – less HIV in their blood -- while the men with the least frequent supertypes had the lowest. One of study’s more significant findings was that black men had lower viral loads than white men.

Findings from the study are especially pertinent to the development of AIDS vaccines. Since it appears that HIV has evolved to assail the most frequent alleles in the population, any vaccine designed to help killer T cells control HIV infection – which is based on the HLA – might not provide protection, Wolinsky said.

Further, because immune system alleles – and, thus disease progression rates -- vary with different populations and geographical areas, it is therefore possible that AIDS vaccines will have to be tailored to specific locations or even for individual patients. Wolinsky’s co-researcher were Elizabeth Trachtenberg, Children’s Hospital Oakland Research Institute Bette Korber, Los Alamos National Laboratory and Thomas Kepler, Duke University, among others.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>