Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student-Built Pill Dispenser

30.06.2003


High-Tech Device Allows Quadriplegic Man to Take Medication Without a Nurse’s Help


Williams uses a mouth stick to enter a security code and order medication as needed.
Photo by Will Kirk


Whitaker and Stemniski, inspect the computer controls that help deliver pills through a plastic tube to Williams.
Photo by Will Kirk



Four Johns Hopkins undergraduates have a designed and constructed a computer-guided pill dispensing machine that will enable a quadriplegic man to lead a more independent life. Using a mouth stick, Robert Arthur Williams will be able to order one of up to 12 different medications stored inside the machine. Then, when Williams taps a "slam switch" (he has limited mobility in his right arm), the machine will dispense a pill through a tube leading to Williams’ mouth.

While the students worked on the machine, Williams was able to move out of a nursing home and into a three-bedroom Baltimore area house with two companions who assist with his care. "With this machine, I’ll be able to take medicine for pain or muscle spasms at 3 in the morning without waking up one of my helpers," he said. "I’ll be able to take care of myself for longer periods of time now."



Williams, a 40-year-old former welder-mechanic, lost the use of his limbs in 1997 when he was struck by a car while crossing a street. After more than four years in a nursing home on a regimen that required him to take up to a dozen pills a day, Williams sought to live in a more independent setting. "To do that, they told me I’d have to find a way to have my medications dispensed to me whenever I needed them, 24 hours a day," he said. For help, Williams turned to the Volunteers for Medical Engineering, a Baltimore organization that provides customized equipment and devices to people with unusual medical problems.

VME administrators, in turn, referred the request to students in the Senior Design Project course in the Department of Mechanical Engineering at Johns Hopkins. Four engineering students enrolled in the two-semester course were asked to design, build and test a device that would allow Williams to take his own medication, as needed, despite his severely limited mobility. The students could spend no more than $8,000 to produce their prototype. "This project had so many challenging aspects involved in it -- electronics, mechanics, ergonomics and computer programming," said Ross Whitaker, a member of the student design team. "We got a whole array of engineering experience while working on it." In the finished device, Williams’ medicine is stored inside a locked box that houses 12 waterwheel shaped dispensers. Each wheel has 15 pill compartments, enabling the device to store up to 180 pills altogether. When Williams needs a particular pill, he can use his mouth stick to press a series of numbered buttons mounted on the front of the unit. First, he enters a security code, then enters the number that corresponds to the medication he wishes to take. Next, when he taps the slam switch, a computer signals the appropriate waterwheel container to turn, dropping the pill into a Teflon coated chute. Gravity causes the pill to slide down the chute and into a flexible tube leading to Williams’ mouth. Water bottles and straws mounted on his wheelchair and near his bed help him swallow the medication. If he needs additional pills, he can repeat the sequence.


"It required a lot of work, but I think the students did a very thorough job on it," said Alan Markham, a retired engineer and VME member who monitored the project. "The students put a lot of ingenious thought into it."

"This was a very challenging project, but also a very rewarding one," said Paul Stemniski, another of the student inventors. "There was a lot of satisfaction in knowing that we were helping Robert."


Stemniski, 22, a mechanical engineering major from Hockessin, Del., plans to begin graduate engineering studies in the fall at the University of Michigan. Whitaker, 22, a biomedical engineering major from Winslow, Maine, is joining St. Jude Medical Inc. as a field engineer. Their Senior Design Project team also included Mark O’Leary, 21, a mechanical engineering major from Ipswich, Mass., and Yo-Rhin Rhim, 22, a mechanical engineering major from Englewood-Cliffs, N.J. Rhim will enter graduate school at Johns Hopkins in the fall, seeking a master’s degree in mechanical engineering.

The pill dispensing device was one of 11 Johns Hopkins projects completed this year by undergraduates in the Senior Design Project course. The class is taught by Andrew F. Conn, a Johns Hopkins graduate with more than 30 years of experience in public and private research and development. Each team of three or four students, working within budgets of up to $10,000, had to design a device, purchase or fabricate the parts, and assemble the final product. Corporations, government agencies and nonprofit groups provided the assignments and funding. The course is traditionally a well-received hands-on engineering experience for Johns Hopkins undergraduates.


Phil Sneiderman | Johns Hopkins University
Further information:
http://www.jhu.edu/news/home03/jun03/assist.html
http://www.jhu.edu/news_info/news/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

Goodbye Absorbers: High-Precision Laser Welding of Plastics

10.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>