Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life-saving imaging techniques developed at Oxford University

27.06.2003


Improvements in echocardiographic sequence and mammogram analysis techniques lead to earlier detection of disease and defects.


Mammogram Samples Containing Microcalcification Clusters. Original Standard Mammogram Forma


Mammogram Samples Containing Microcalcification Clusters. Foveal Image Processing



Imaging various parts of the body is an established and important method for the diagnosis of diseases such as breast cancer, and is also used extensively for the detection of abnormalities in organs such as the heart. Accurate interpretation, and ultimately correct diagnosis, is dependent on the quality of the images. High quality images, however, can often be extremely difficult to achieve even for experts within a given field. Researchers are constantly striving to improve existing techniques so that better quality images can be produced that will facilitate quicker and more accurate diagnoses. Such improvements have the potential to greatly benefit patients’ prospects by enabling earlier commencement of treatment, thus preserving or even improving patients’ quality of life.

To address these imaging needs, researchers in Oxford’s Department of Engineering Science have developed two new imaging techniques with life saving potential in the medical field. They have achieved important and measurable improvements in image quality that will increase the accuracy of diagnosis of serious diseases and defects.


Echocardiographic Sequence Analysis

Subject movement during capture of an image is a major problem in subsequent diagnosis, as the subject must be tracked as it moves from frame to frame (this movement is known as optical flow or image velocity). Measurement of optical flow can improve the image encoding efficiency, or allow enhancement of the display of the movement of some particular tracked part of the image to assist a clinician attempting to make a diagnosis.

The high noise levels of medical images present many difficulties in image processing. For example, the tracking of cardiac walls in ultrasound images is difficult because of the inherently high level of noise in such images and because of the variation in cardiac motion during the cardiac cycle. Several means of identifying and tracking cardiac walls in echocardiograms have been proposed, but it is a difficult task that requires improvement.

In looking to make these improvements, Oxford researchers have recently developed a method for identifying boundary pixels in echocardiographic sequences or other ultrasound image sequences by utilising phase boundary detection followed by optical flow estimation. New contributions to these basic computer vision processes have resulted in a system that is both fast and robust.

Mammogram Analysis (Microcalcifications)

Early correct diagnosis of breast cancer can mean the difference between life and death for the significant proportion of western women affected by the disease. Small clumps of calcium salts - microcalcifications - are often the earliest signs of breast cancer, and appear in 25% of mammograms. Oxford researchers have developed a new method to identify more reliably these clusters.

Calcifications appear as bright spots or clusters of spots; small clustered whorled calcifications are those most likely to indicate malignancy. The existence of microcalcifications in a mammogram is a clear warning of abnormality. Any program to assist a radiologist detect microcalcifications must miss few, if any, clinically important clusters, but equally must not signal too many false positives. With the increasingly vast number of mammograms to be analysed from screening programmes, automated computer-aided detection methods are a necessity.

Although several methods have been proposed for detecting microcalcification clusters, they have all been limited by faults such as the return of too many false positives. Oxford researchers, however, have recently developed a foveal segmentation method, based on differential local contrast in the image, that will significantly reduce the risk of both false negatives and false positives in identifying calcifications in mammograms.

Kim Bruty | EurekAlert!
Further information:
http://www.admin.ox.ac.uk/

More articles from Health and Medicine:

nachricht Uncuffing nitric oxide production: Beta-arrestin2 complexes regulate NO levels
05.06.2020 | Medical University of South Carolina

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>