Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biochips in Drug Development

26.06.2003


Figure 1: Ligand fishing (BIA-MS coupling)


Figure 2: ADME assays of small compounds binding to HSA


Biomolecular interaction analysis (BIA) using SPR (surface plasmon resonance) biosensors is now utilised increasingly in nearly all phases of drug development. The BIA system consists out of a light source emitting near infrared light, a sensor microchip, an automated liquid handling system with constant flow and a diode array position-sensitive detector. One of the two interacting partners (referred to as the ligand) is immobilized on the sensor surface. The other binding partner, called the analyte, is directed over the surface in a constant flow system allowing to monitor the interaction of the binding partners in “real time”.

BIA covers a broad range of applications in target identification and validation, secondary screens and lead optimisation, early ADME assays as well as testing immunoreactivity.

Assay development and functional assays of proteins are the most commonly used areas of applications of BIA in drug development.



Advantages of SPR-based measurements are the possibility to measure in real time without the need of labelling yielding highly reproducible kinetic data with low sample consumption.

Ligand fishing

BIA-technology is ideally suited as a micro-affinity purification platform allowing on-line detection of binding events and the direct quantification of bound material on biological surfaces of interest.

Kinetic parameters may be obtained as additional information. Provided that a binding partner has been captured on the sensor chip it can be recovered by a gentle elution for further downstream analyses like mass spectrometry or western blot analysis (see figure 1).

In comparison to classical chromatographic methods biosensor systems show reduced unspecific binding, are compatible with small volume recovery and are readily automated.

The identification of unknown ligands is of particular interest for revealing function of orphan receptors, for the detection of cellular interaction networks and for testing the biocompatibility of novel surface coatings.

Target validation

Genomics and proteomics based techniques have provided a lot of new potential targets which has to be validated to prove that a DNA, RNA or protein molecule is directly involved in a disease process and is therefore a suitable target for the development of new therapeutic compounds.

The assessment of biological function, involvement in biological pathways and role in pathogenesis of potential targets can be achieved by mapping and validation of protein interaction networks in vivo and in vitro.

Yeast two hybrid and phage display are classical approaches for systematic protein interaction screening capable to probe millions of interactions. Positives obtained from these screening technologies can be validated using BIA technology.

Furthermore, additional parameters relevant for the interaction of interest can be investigated. This could be interactions with multiple components, effects of cofactors, pH-changes or the role of posttranslational modifications.

Lead optimisation

Hit validation is needed to determine whether a molecule identified in a screen or assay will eventually lead to a drug.

Therefore secondary assays generating data about potency, selectivity and functional biochemical activity have to be performed.

BIA technology has an enormous capability for the rapid confirmation of hits from high throughput screens by a comprehensive kinetic characterisation of potential lead compounds.

Information about affinities, rates of association and dissociation in complex formation and binding stoichiometries is very valuable for a ranking and optimisation of lead compounds. Even compounds binding with low affinity or transient kinetics, often found in early phases of drug development, can accurately be identified.

The kinetic information obtained by functional assays together with the knowledge about structural properties of biomolecules allows predictions on structure activity relationships.

Lead optimisation is an iterative process involving computer-assisted molecular modelling, chemical synthesis of new compounds and functional assays.

BIA technology is used in lead optimisation by linking compound structural information with a comprehensive kinetic characterisation of ligand binding.

ADME

ADME assays (adsorption, distribution, metabolism, elimination) become more and more important even in the earlier phases of the drug development process.

BIA assays provide very valuable information for a cost-effective in vitro characterisation of potential drug candidates in early ADME studies, although there are no methods available for accurately predicting what will happen to a drug in vivo.

SPR biosensor technology has already been applied for the binding of potential drug candidates to serum proteins, for analysing the adsorption of small molecules to artificial membranes immobilised on sensor chips and for measuring the influence of compounds on metabolic pathways.

The pharmacokinetic properties of small molecule drugs are a function of the reversible binding to serum proteins such as serum albumin, alpha 1-acid glycoprotein or gamma globulins, reducing the bioavailibility of the drug (see figure 2).

Biaffin offers a BIA assay for analysing the binding of small molecule compounds to high density serum protein surfaces yielding valuable information about affinitiy, solubility and binding stoichiometry of potential drug candidates.

Immune response

Newly designed pharmaceuticals can cause an unwanted immune response. In preclinical studies such potentials can be recognised in animal studies.

BIA technology can detect antibodies against new drugs in animal serum samples. With appropriate control experiments positive binding signals of low antibody levels can clearly be identified as a specific signal despite of the complexity of the protein mixture in serum samples.

Dr. Stephan Drewianka | Biaffin GmbH & Co KG
Further information:
http://www.biaffin.com/drug_development.htm
http://www.innovations-report.de/html/profile/profil-1117.html

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>