Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researching a workout device to help keep the balance system in shape

25.06.2003


Astronauts on extended missions go into space with a spring in their step but rarely return from the International Space Station (ISS) walking steady.



“We want to develop a training device to counter the effects while in space and help astronauts recover more quickly upon return to Earth,” said Dr. Jacob Bloomberg, a researcher on the National Space Biomedical Research Institute’s (NSBRI) neurovestibular adaptation team.

Returning astronauts walk with an unstable gait and wide stance and can take almost two weeks to fully recover their footing after a long-duration flight on the ISS. A new treadmill training system being researched could help shorten or remove post-flight balance problems and eventually help elderly patients and others with similar problems.


Bloomberg and his team are using a new, integrated research protocol to discover and test ways to counter the ill effects of space flight on the balance and walking systems. The goal of the research is to develop an in-flight treadmill training system that will improve the brain’s ability to readapt to gravity environments whether it is a return to Earth or a landing on Mars. In addition to developing training programs, Bloomberg is working on better ways to evaluate balance and walking function in returning astronauts.

“Rather than study individual systems in isolation we’re looking at how multiple systems interact and adapt during space flight to cause balance problems,” said Bloomberg, senior research scientist at NASA’s Johnson Space Center. “We are working to understand how multiple, interdependent full-body sensory-motor systems are integrated to produce a complex behavior like walking.”

A person’s performance on a unique series of integrated tests – an obstacle course, a treadmill and visual acuity test – will help the researchers develop solutions to not only balance and mobility, but also eye coordination. These tests will serve to evaluate the effectiveness of in-flight interventions designed to reduce the negative effects of space flight on post-flight balance and walking function.

During testing, subjects walk on a treadmill while head, eye and body movements are recorded with a video-based motion capture system. At the same time, other sensors record body accelerations and the vertical forces that occur during each foot-fall; all this while subjects identify symbols on a computer screen to measure visual acuity. With this unique set-up, Bloomberg and his group can determine how the nervous system responds and adapts to different alterations in sensory input during walking. To complement the treadmill test, the obstacle course serves to help understand the practical implications of sensory-motor changes that lead to post-flight walking disturbances.

“This work will motivate the next generation of treadmill devices used on the International Space Station. While astronauts are training to maintain aerobic capacity and muscle strength, they will also be training their brains to readapt to a gravity environment,” Bloomberg said. “Everyone is told they need to exercise to maintain their heart and muscles, but rarely do people train to keep their balance system in shape.”

Further development of these testing protocols will not only help develop better tools to diagnose problems for elderly patients and others with balance problems, but may also help train them to overcome these problems.

###

The NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration space flight. The Institute’s research and education projects take place at more than 70 institutions across the United States.


Liesl Owens | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=65

More articles from Health and Medicine:

nachricht Study tracks inner workings of the brain with new biosensor
16.08.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Foods of the future
15.08.2018 | Georg-August-Universität Göttingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>