Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Image-guided suite of the future brings precision to minimally invasive procedure

20.06.2003


Minimally invasive treatment of disease, a revolutionary alternative to larger surgical incisions and longer recovery times, is undergoing its own transformation. Interventional radiologists are fusing imaging technologies with the accuracy of robots and automated instruments to help physicians target cancerous tumors and diseases with exquisite precision.



Three major categories of technology are at the forefront: robotics, global positioning systems (GPS) and next-generation image displays, such as imaging fusion, 3-D imaging and virtual reality devices known as "augmented reality."

"Many of these technologies have already been used in medicine, but their integration with imaging technology in the therapeutic realm is new," said Brad Wood, M.D., an interventional radiologist in the imaging sciences program at the National Institutes of Health (NIH) Clinical Center in Bethesda, Md.


Dr. Wood described the image-guided suite of the future today at a Radiological Society of North America media briefing on image-guided therapies.

In treating serious illnesses such as cancer, precision is key, according to Dr. Wood. A fraction of a millimeter can determine whether a tumor grows back or disappears. Despite forward strides, minimally invasive procedures still involve some estimating, even those performed by the most experienced clinicians, Dr. Wood said. Computed tomography (CT), positron emission tomography (PET) and magnetic resonance (MR) imaging offer detailed information, but physicians still count on their clinical experience to actually reach a target.

"The ’multi-modality’ suite of the future will eliminate much of the guesswork, reduce the risk of human error, and even minimize the impact of variations in physicians’ clinical abilities by standardizing many procedures," Dr. Wood said. "These advances will improve success rates and patient outcomes and help facilitate emerging new procedures."

Beyond its precision, the promise of the image-guided suite also lies in its cost-effectiveness and potential for use by community hospitals.

"The suite of the future will rely on relatively inexpensive, accessible modalities, such as CT and ultrasound," Dr. Wood said. "These technologies will allow physicians to treat more patients in their hospitals rather than having to send them to larger medical centers."

Robotics
Robots assist in everything from heart surgery to hip replacement, and now at the NIH Clinical Center, interventional radiologists and biomedical engineers have developed one of the first systems to seamlessly integrate robotics with imaging technology.

On its first attempt, the robot prototype quickly made contact with a BB buried deep in a model of the human body and later scored more precisely than the physician in a study on needle placement accuracy for tumor destruction. The system is scheduled for use on patients at the NIH Clinical Center beginning in September, initially to help with needle positioning.

"Physicians will insert the needle themselves, at first, but the device will eliminate the guesswork of deciding where the needle should go," Dr. Wood said.

Ultimately, physicians will view a CT scan on a computer screen, click on a tumor and instruct the robot to calculate the ideal angle and depth of needle entry and to insert the needle. The physician will then deliver the appropriate dose of radiofrequency energy or heat to destroy the tumor.

GPS-guided therapy
The principles of global positioning systems (GPS) used by the military and auto industry, where information from satellites helps to locate, track and direct actions on the ground, is being adapted for minimally invasive interventional treatments.

CT and ultrasound scans provide the information to locate, track and direct a needle or guidewire bearing an electromagnetic sensor. The instruments are inside a catheter that has been inserted into the patient. The positioning system will map the ideal route to the target and provide real-time CT or ultrasound displays of the sensor’s position in relation to the target. The system’s precision and real-time feedback will reduce the risk of damage to surrounding tissue and critical structures. This mini-GPS will also be used to fuse regular x-rays to CT scans for improvements to image-guided therapies like angiography, stenting, angioplasty and embolization.

Eventually, physicians will also use this technology to deliver "designer nanoparticles," such as proteins, gene therapy, chemotherapy, antibodies and other cargo that have been specifically designed to target a patient’s tumor or a specific organ, and spare damage to non-cancerous tissue, according to Dr. Wood. Such molecular-based targeted therapeutics will rely upon advanced navigation systems like the mini-GPS for local or regional delivery to the targeted area. Image display
Augmented reality will expand what doctors are able to see with the naked eye. Augmented reality devices, such as headsets with special goggles similar to virtual reality devices, will superimpose three-dimensional, computer-generated images of anatomy onto the patient during therapy. Augmented reality technology will show physicians where a needle or other instrument needs to go and supply real-time information about the areas they have reached, or missed.

Additionally, image-fusion technology links PET and CT, two cornerstones of contemporary imaging, and brings PET into the treatment area for the first time. Combining the structural information of CT with the metabolic information of PET provides updated, fused images during treatment. The fused images take advantage of each imaging technique by highlighting treated versus untreated regions and areas of malignancy.

Another method highlighting treated and untreated areas during therapy will be computer-generated, 3-D CT images of organs or other anatomy. These images will be displayed on an orb or globe so the physician can look over and around them, instead of looking on an x-ray or wall, or rotating them on a screen with a mouse.

"Three-dimensional displays generated by CT scans to plan treatment are not new, but they have never been used to provide an ongoing source of information during these procedures," Dr. Wood said.

He said while some components of the image-guided suite of the future have already been used in treatment, including real-time imaging fusion, others have yet to be applied to patients, but hold enormous potential. "We are excited to see significant improvements as these methods come into clinical use," he said.

Maureen Morley | EurekAlert!
Further information:
http://www.RadiologyInfo.org

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>