Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium shows promise against Alzheimer’s in mouse model

22.05.2003


An enzyme crucial to formation of Alzheimer’s plaques and tangles may hold promise as a target for future medications, suggest studies in mice and cells. By blocking the enzyme, lithium stems the accumulation of beta amyloid, which forms Alzheimer’s plaques, scientists funded by the National Institutes of Health (NIH) report in the May 22, 2003 Nature. Inhibiting the enzyme, glycogen synthase kinase – 3 alpha (GSK-3 alpha), also blocks formation of neurofibrilary tangles by the tau protein.



"Although widely used to treat bipolar disorder, lithium’s propensity to cause side-effects may limit its use in older people, who are more susceptible to Alzheimer’s disease," cautioned Peter Klein, M.D., University of Pennsylvania School of Medicine, who led the research team, which was funded by the National Institute of Mental Health (NIMH) and the National Institute on Aging (NIA). It will also be important to develop "new agents" that specifically target GSK-3 alpha, he added.

To pinpoint the enzyme’s role in the formation of amyloid plaques, the researchers first treated cells expressing the amyloid precursor protein with lithium, which they had earlier shown blocks GSK-3. Therapeutic doses of lithium inhibited the production of beta amyloid. Another GSK-3 inhibitor, structurally unrelated to lithium, also reduced production of beta amyloid, as did blocking expression of the GSK-3 alpha protein. Likewise, raising GSK-3 alpha levels enhanced beta amyloid production. These experiments established that the enzyme is required for maximal amyloid processing.


In mouse neurons expressing amyloid precursor protein, lithium significantly reduced production of beta amyloid. A therapeutic dose of lithium also markedly reduced the peptides and beta amyloid production in an animal model of Alzheimer’s disease -- mice carrying mutations that are known to cause inherited Alzheimer’s disease in humans.

Since certain non-steroidal anti-inflammatory drugs (NSAIDs) similarly reduce beta amyloid levels, but via a slightly different mechanism, the researchers suggest that combination therapy with lithium and NSAIDs could have an enhanced effect in reducing amyloid peptide accumulation.

Lithium also protects neurons from stimuli that trigger programmed neuronal cell death in Alzheimer’s disease. Pending development of new medications that target the enzyme, the researchers suggest that lithium "might be considered for the prevention of Alzheimer’s disease, especially in younger patients with an inherited form of Alzheimer’s disease or Down’s syndrome."

The new findings have spurred interest in whether patients taking lithium for bipolar disorder might have a lower incidence of Alzheimer’s disease, Klein noted.

Other participants in the study were: Drs. Christopher Phiel, Christina Wilson, Virginia M.-Y. Lee., University of Pennsylvania School of Medicine.


###
NIMH and NIA are part of the NIH, the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Contacts: Jules Asher
NIMH press office
301-443-4536
jasher@nih.gov

Doug Dollomore
NIA press office
301-496-1752
dollemod@nia.nih.gov

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/
http://www.nimh.nih.gov/publicat/bipolarmenu.cfm
http://www.alzheimers.org/unraveling/index.htm

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Shock-dissipating fractal cubes could forge high-tech armor

08.07.2020 | Materials Sciences

Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents

08.07.2020 | Health and Medicine

'Growing' active sites on quantum dots for robust H2 photogeneration

08.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>