Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lithium shows promise against Alzheimer’s in mouse model

22.05.2003


An enzyme crucial to formation of Alzheimer’s plaques and tangles may hold promise as a target for future medications, suggest studies in mice and cells. By blocking the enzyme, lithium stems the accumulation of beta amyloid, which forms Alzheimer’s plaques, scientists funded by the National Institutes of Health (NIH) report in the May 22, 2003 Nature. Inhibiting the enzyme, glycogen synthase kinase – 3 alpha (GSK-3 alpha), also blocks formation of neurofibrilary tangles by the tau protein.



"Although widely used to treat bipolar disorder, lithium’s propensity to cause side-effects may limit its use in older people, who are more susceptible to Alzheimer’s disease," cautioned Peter Klein, M.D., University of Pennsylvania School of Medicine, who led the research team, which was funded by the National Institute of Mental Health (NIMH) and the National Institute on Aging (NIA). It will also be important to develop "new agents" that specifically target GSK-3 alpha, he added.

To pinpoint the enzyme’s role in the formation of amyloid plaques, the researchers first treated cells expressing the amyloid precursor protein with lithium, which they had earlier shown blocks GSK-3. Therapeutic doses of lithium inhibited the production of beta amyloid. Another GSK-3 inhibitor, structurally unrelated to lithium, also reduced production of beta amyloid, as did blocking expression of the GSK-3 alpha protein. Likewise, raising GSK-3 alpha levels enhanced beta amyloid production. These experiments established that the enzyme is required for maximal amyloid processing.


In mouse neurons expressing amyloid precursor protein, lithium significantly reduced production of beta amyloid. A therapeutic dose of lithium also markedly reduced the peptides and beta amyloid production in an animal model of Alzheimer’s disease -- mice carrying mutations that are known to cause inherited Alzheimer’s disease in humans.

Since certain non-steroidal anti-inflammatory drugs (NSAIDs) similarly reduce beta amyloid levels, but via a slightly different mechanism, the researchers suggest that combination therapy with lithium and NSAIDs could have an enhanced effect in reducing amyloid peptide accumulation.

Lithium also protects neurons from stimuli that trigger programmed neuronal cell death in Alzheimer’s disease. Pending development of new medications that target the enzyme, the researchers suggest that lithium "might be considered for the prevention of Alzheimer’s disease, especially in younger patients with an inherited form of Alzheimer’s disease or Down’s syndrome."

The new findings have spurred interest in whether patients taking lithium for bipolar disorder might have a lower incidence of Alzheimer’s disease, Klein noted.

Other participants in the study were: Drs. Christopher Phiel, Christina Wilson, Virginia M.-Y. Lee., University of Pennsylvania School of Medicine.


###
NIMH and NIA are part of the NIH, the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Contacts: Jules Asher
NIMH press office
301-443-4536
jasher@nih.gov

Doug Dollomore
NIA press office
301-496-1752
dollemod@nia.nih.gov

Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/
http://www.nimh.nih.gov/publicat/bipolarmenu.cfm
http://www.alzheimers.org/unraveling/index.htm

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>