Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting through the matrix

19.05.2003


MGH research suggests strategies for improving drug delivery to cancer cells



The best cancer drugs in the world are not much good if they cannot get to tumor cells. That problem has been challenging cancer physicians and researchers for years because the physical structure of many tumors can prevent anticancer agents from reaching their targets. In a study appearing in the June issue of Nature Medicine, researchers from Massachusetts General Hospital (MGH) describe a new technique for assessing the permeability of tumors and a promising new way of improving tumors’ accessibility to drugs. The report is receiving advance online publication on the journal’s website at http://www.nature.com/nm/.

"We’ve known for a long time that many cancer drugs work very well on cells, but not so well in patients," says Rakesh Jain, PhD, director of the Steele Laboratory for Tumor Biology at MGH, senior author of the study. "As we have improved the understanding of tumor physiology, we have found that a significant portion of a tumor is made up of an extracellular matrix that acts as a barrier, keeping drugs away from tumor cells."


This matrix is largely made up of the connective tissue collagen. To determine the structure and content of collagen in different tumor types and to assess its effect on a tumor’s permeability, Jain’s team used a new imaging technique called second-harmonic generation (SHG), a non-invasive way of measuring an optical signal released by certain molecular structures. The researchers first showed that SHG can distinguish among types of connective tissue molecules and can specifically image the structure and density of collagen fibers.

By imaging tumors that had been implanted in mice, Jain’s team was able to produce high-definition 3-D images that revealed the amount and form of collagen. Studying three types of tumors known to have different relative collagen contents, they showed that SHG could accurately measure collagen levels that correlated with measurements of tumor permeability. This result suggests that SHG could allow analysis of the structure and content of a tumor’s collagen to help with treatment planning.

To test whether SHG could measure collagen modification, the researchers first applied the enzyme collagenase, which breaks down collagen, directly to mouse tumors. Images taken after collagenase application showed significant changes in the SHG images. However, because collagen is an important part of the body’s overall structure, collagenase would not be a useful treatment adjunct since its effect could spread far beyond the tumor itself.

In their search for an agent to selectively break down tumor-matrix collagen, the research team turned to a hormone called relaxin. Naturally produced in pregnant females, relaxin increases production of enzymes associated with dilation of the cervix and other processes needed for birth preparation. Clinical trials for other potential uses of relaxin have found only minor side effects in humans.

The researchers used intravenous pumps to deliver relaxin into the bloodstream of mice with implanted human tumors and then used SHG to image the tumors over a 12-day period. They also imaged the tumors of a control group that did not receive relaxin. While the amount of collagen in the relaxin-treated tumors was similar to that seen in the control group at the end of the study period, in the relaxin-treated mice the collagen fibers had broken down and were measurably shorter. When the researchers used probe molecules to measure the tumors’ permeability, the results indicated that the relaxin-treated matrix tissue was looser and less of an obstacle to penetration.

"We have already started animal studies to measure whether relaxin can improve actual response to chemotherapy drugs," says Jain, who is A.W. Cook Professor of Tumor Biology at Harvard Medical School. "If those results are positive, the fact that relaxin is so safe means we could move relatively quickly into human clinical trials."

A key collaborator in this research is Brian Seed, PhD, of the MGH Department of Molecular Biology. Other authors of the report are Edward Brown, PhD, of MGH and Trevor McKee, BSc, of Massachusetts Institute of Technology, co-first authors; Emmanuelle diTomaso, PhD, and Yves Boucher, PhD, also of MGH; and Alain Pluen, PhD, of the University of Manchester in the United Kingdom. The research was supported by grants from the National Cancer Institute.


###
Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and Brigham and Women’s Hospital formed Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups, and nonacute and home health services.


Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>