Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated protein combination tied to excessive sugar production

19.05.2003


Study identifies potential target for diabetes drugs



Researchers at Dana-Farber Cancer Institute have traced runaway sugar production in the liver – an important feature of diabetes – to flaws in a two-protein combination at the heart of a molecular switch that responds to insulin.

The findings, to be posted by the journal Nature on its Web site on May 18, suggest that drugs designed to block the interaction of the two switch proteins might be effective in treating diabetes, and with few side effects.


Building on their discovery of this master switch in fall 2001, scientists led by Dana-Farber’s Bruce Spiegelman, PhD, found that two previously known proteins in mice must “dock,” one on top of the other, to enable the switch to turn on genes that initiate the liver’s sugar-making process. Furthermore, when mutations cause a flaw in one of the proteins, the switch no longer can respond to insulin, the hormone that normally regulates sugar manufacture in the liver.

“The actual molecular connections between the proteins are potential targets for diabetic therapy,” says Spiegelman, the paper’s senior author. It may be possible to design an oral drug that could block the joining of the two proteins – PGC-1alpha and FOXO1 – when the switch is stuck in the “on” position.

The liver’s manufacture of sugar from raw materials, a process called gluconeogenesis, is designed to provide the body (especially the brain) with necessary glucose when the person has been fasting and isn’t obtaining the sugar from food. Glucagon and glucocorticoid hormones initiate the process on by sending signals to liver cells, triggering activity (DNA transcription) in genes that set gluconeogenesis in motion.

Insulin, produced in the pancreas, has the opposite effect, turning off gluconeogenesis when normal feeding resumes. Insulin activates the insulin receptors on liver cells’ surfaces, which send signals into the cells’ nuclei where they are received by the switch made up of the PGC-1alpha and FOXO1 proteins.

FOXO1 protein, known as a transcription factor, binds directly to the DNA molecules of the gluconeogenesis genes, causing them to copy their genetic blueprints into RNA. PGC-1alpha does not directly bind to the DNA, but instead docks onto the FOXO1 protein. Together, “they area a powerful, insulin-sensitive switch” for gluconeogenesis, says Spiegelman. “PGC-1 provides the horsepower, and FOXO1 is the insulin-sensitive receiver” of signals.

In a series of experiments with transgenic mice, Spiegelman and his colleagues showed that if a mutation occurs in the gene producing FOXO1, it results in an abnormal FOXO1 protein that no longer is sensitive to insulin. Consequently, the switch fails and the liver overproduces glucose, which spills into the blood and can damage vital organs and nerves.

In his previous Nature paper [Sept. 13, 2001] Spiegelman demonstrated that the PGC-1alpha protein was the long-sought switch for gluconeogenesis, but how that protein worked with FOXO1 wasn’t clear. At the time, Spiegelman suggested that blocking PGC-1alpha might be a new therapeutic strategy. He now says that targeting just the combination of PGC-1alpha and FOXO1 would be a more finely pointed tool with fewer unwanted effects.

“What’s exciting about this paper is that is unifies two fields,” commented Spiegelman, who is also a professor of cell biology at Harvard Medical School. “One was the discovery of the signaling pathway from the insulin receptor to the FOXO1 protein – and this was found in worms. The other was the work that led to the identification of PGC-1alpha as the switch for gluconeogenesis. Now we know that it is the complex of PGC-1alpha and FOXO1 that is important.”



The research was funded in part by the National Institutes of Health.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>