Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutated protein combination tied to excessive sugar production

19.05.2003


Study identifies potential target for diabetes drugs



Researchers at Dana-Farber Cancer Institute have traced runaway sugar production in the liver – an important feature of diabetes – to flaws in a two-protein combination at the heart of a molecular switch that responds to insulin.

The findings, to be posted by the journal Nature on its Web site on May 18, suggest that drugs designed to block the interaction of the two switch proteins might be effective in treating diabetes, and with few side effects.


Building on their discovery of this master switch in fall 2001, scientists led by Dana-Farber’s Bruce Spiegelman, PhD, found that two previously known proteins in mice must “dock,” one on top of the other, to enable the switch to turn on genes that initiate the liver’s sugar-making process. Furthermore, when mutations cause a flaw in one of the proteins, the switch no longer can respond to insulin, the hormone that normally regulates sugar manufacture in the liver.

“The actual molecular connections between the proteins are potential targets for diabetic therapy,” says Spiegelman, the paper’s senior author. It may be possible to design an oral drug that could block the joining of the two proteins – PGC-1alpha and FOXO1 – when the switch is stuck in the “on” position.

The liver’s manufacture of sugar from raw materials, a process called gluconeogenesis, is designed to provide the body (especially the brain) with necessary glucose when the person has been fasting and isn’t obtaining the sugar from food. Glucagon and glucocorticoid hormones initiate the process on by sending signals to liver cells, triggering activity (DNA transcription) in genes that set gluconeogenesis in motion.

Insulin, produced in the pancreas, has the opposite effect, turning off gluconeogenesis when normal feeding resumes. Insulin activates the insulin receptors on liver cells’ surfaces, which send signals into the cells’ nuclei where they are received by the switch made up of the PGC-1alpha and FOXO1 proteins.

FOXO1 protein, known as a transcription factor, binds directly to the DNA molecules of the gluconeogenesis genes, causing them to copy their genetic blueprints into RNA. PGC-1alpha does not directly bind to the DNA, but instead docks onto the FOXO1 protein. Together, “they area a powerful, insulin-sensitive switch” for gluconeogenesis, says Spiegelman. “PGC-1 provides the horsepower, and FOXO1 is the insulin-sensitive receiver” of signals.

In a series of experiments with transgenic mice, Spiegelman and his colleagues showed that if a mutation occurs in the gene producing FOXO1, it results in an abnormal FOXO1 protein that no longer is sensitive to insulin. Consequently, the switch fails and the liver overproduces glucose, which spills into the blood and can damage vital organs and nerves.

In his previous Nature paper [Sept. 13, 2001] Spiegelman demonstrated that the PGC-1alpha protein was the long-sought switch for gluconeogenesis, but how that protein worked with FOXO1 wasn’t clear. At the time, Spiegelman suggested that blocking PGC-1alpha might be a new therapeutic strategy. He now says that targeting just the combination of PGC-1alpha and FOXO1 would be a more finely pointed tool with fewer unwanted effects.

“What’s exciting about this paper is that is unifies two fields,” commented Spiegelman, who is also a professor of cell biology at Harvard Medical School. “One was the discovery of the signaling pathway from the insulin receptor to the FOXO1 protein – and this was found in worms. The other was the work that led to the identification of PGC-1alpha as the switch for gluconeogenesis. Now we know that it is the complex of PGC-1alpha and FOXO1 that is important.”



The research was funded in part by the National Institutes of Health.

Dana-Farber Cancer Institute is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | EurekAlert!
Further information:
http://www.dfci.harvard.edu/

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>