Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mouse model will aid research on premature aging syndrome

15.05.2003


Researchers from the National Cancer Institute (NCI) have developed a mouse model of the premature aging syndrome known as Hutchinson-Gilford Progeria Syndrome (HGPS), according to a report appearing in the journal Nature. Researchers hope the mouse model will facilitate a better understanding of the fatal syndrome, as well as provide clues to the normal aging process.



Currently, there is no treatment for progeria, and children with the rare condition usually die of heart disease in their early teens. Although normal at birth, children with progeria begin to develop growth retardation, thinning skin, and fragile bones as young as 18 months.

"The similarities between mice with this particular mutation and patients with progeria are remarkable," said Colin Stewart, Ph.D., of NCI’s Center for Cancer Research, the senior investigator on the study. "Now that we’ve identified the critical gene and have an animal model that mimics progeria, we have powerful tools for studying both the aging process and this devastating disease."


The results of the animal study come less than a month after the announcement that scientists have discovered the gene responsible for progeria in children. Studies published in March in the journals Science and Nature described a single inaccuracy in the Lamin A (Lmna) gene that appears to account for the syndrome. The gene produces structural proteins known as lamins, which are found in the cell nucleus. In the new study, NCI researchers report that mice with a specific mutation in the same gene have symptoms remarkably consistent with those of progeria patients.

Although indistinguishable from their littermates at birth, mice with the Lmna mutation develop severe growth retardation early in life and die within five weeks, whereas normal mice generally live up to two years. Like progeria patients, mice in the study showed signs of premature aging.

In the mice, accelerated aging was most apparent in the skin, which thinned dramatically and lost hair. Researchers also observed reduced growth or degeneration of the heart and skeletal muscles in mutant mice. Similarly, the mice had either incomplete development of the skeleton or a premature loss of bone mass, also characteristic of children with progeria. Mice with the Lmna mutation shared many other symptoms with progeria patients, including a slight waddling gait, abnormal teeth, and incomplete sexual maturation.

The Lmna gene codes for A- and C-type lamins, components of the fibrous network lining the inside of the cell nucleus called the nuclear lamina. The mutant form of the gene associated with progeria symptoms causes disruption in the structure of the cell nucleus. Studying the relationship between progeria symptoms and this abnormality could help researchers understand the cellular processes associated with aging.

NCI Press Officer | EurekAlert!
Further information:
http://www.nci.nih.gov/
http://cancer.gov

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>