Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D mammography shows promise as next breast screening technique

08.05.2003


“Full-field digital tomosynthesis is mammography--only better,” researchers say of a new technique that just might be the next generation of breast cancer screening. Two new studies on this technique illustrate that full-field digital tomosynthesis (TOMO) can not only increase the visibility of breast lesions but could likely dramatically reduce the number of patients being called back for a second mammogram because their first screening mammogram was unclear.



In the first study, researchers compared standard plain film mammography to TOMO. Forty patients were included in the study. Radiologists detected 16 of 22 malignant lesions on mammography and 18 of 22 malignant lesions on TOMO, says Elizabeth Rafferty, MD, lead author of both studies. TOMO was superior to plain film mammography in detecting masses and architectural distortions, which results from a tethering or pulling in of the tissue, says Dr. Rafferty. Calcifications were not as conspicuous on the tomosynthesis imaging during the pilot study, she says. “We are currently implementing a solution to this challenge and will have data on this soon,” she adds.

In the second study, 45 patients were reviewed. All patients had been called back for a second mammogram because their first showed a possible abnormality; “30 of them were subsequently found by additional mammographic views to have breast tissue overlap accounting for their possible abnormality,” she says. Fifteen patients went on to biopsy. “We asked radiologists to look at the TOMO study (without knowing the results of the second mammogram or biopsy) and indicate whether they would have called these patients back for additional evaluation,” says Dr. Rafferty. They indicated that they would have only called back five of the 30 patients who had breast tissue overlap. “If we could have used TOMO on these patients initially, it would have saved 25 women the anxiety they felt and the inconvenience they experienced of being called back for additional tests,” notes Dr. Rafferty.


The radiologists indicated that they would have recalled 14 of the 15 patients who had a biopsy, says Dr. Rafferty. A single reader missed one cancer, she says. “This is well within the standard interobserver variability seen with conventional mammography,” she adds.

“TOMO allows us to take multiple projections of the breast at different angles. These projections are then reconstructed into a three-dimensional data set. We can then look at each slice individually and assess each area of the breast without confusing overlap from surrounding structures,” Dr. Rafferty says. “The ability to look at individual slices of the breast is a real asset,” she says.

TOMO is more comfortable for the patient. The patient’s breasts only need to be compressed once (compared to twice for the standard two-view mammogram); the patient sits during the procedure, and the overall radiation dose is lower, says Dr. Rafferty. Dr. Rafferty cautions, however, that “full-field digital tomosynthesis is still in its infancy.” However, she predicts, “this technique will only get better.” Researchers at Massachusetts General Hospital conceived, developed, and patented full-field breast tomosynthesis, and, in conjunction with General Electric, built the only prototype currently in clinical use. To date, more than 350 clinical tomosynthesis studies have been performed at Massachusetts General Hospital under research protocols.


Dr. Rafferty will present the results of her studies on May 8 during the American Roentgen Ray Society Annual Meeting in San Diego.

Contact: Keri J. Sperry (703) 858-4306
Danica Laub (703) 858-4332
Press Room: (619) 525-6536 (May 5-8)

Keri Sperry | EurekAlert!
Further information:
http://www.arrs.org/

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>