Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of how prolactin travels to gene’s machinery helps explain its role in breast cancer

14.04.2003


Prolactin, a naturally occurring peptide hormone needed for milk production following pregnancy, has been found to play a major role in the development and spread of breast cancer. More recently, Dr. Charles Clevenger, the same researcher who first demonstrated the scope and mechanism of prolactin’s role in cancer, has discovered that prolactin functions directly inside the cell, not merely by sending signals across the cell membrane as had been assumed for it and all other peptide hormones.



Dr. Clevenger also has discovered how prolactin is able to travel across the cell membrane and directly into the DNA machinery of the cell. These findings suggest a pathway through which new therapies could block the growth and spread of breast cancer -- and offer a new paradigm for how other hormones function, not just in breast cancer but in a number of other diseases.

The University of Pennsylvania researcher describes his research at the Experimental Biology 2003 meetings in San Diego. He will be honored by the American Society of Investigative Pathology, at the EB 2003 meeting, with the Pfizer Outstanding Investigator Award. The award honors a decade of steady unraveling, by Dr. Clevenger, of how prolactin works in breast cancer, including this most recent discovery.


Although scientists recognized prolactin was involved with breast cancer in rats as early as the 1970s, they focused solely on the hormone produced by the pituitary gland in the brain. Human trials based on this assumption failed miserably. But in the 1990s, using greatly improved technology and techniques, Dr. Clevenger was able to show that breast tissue itself produces prolactin in significant quantities and that more than 95 percent of all breast cancers express the prolactin receptor, meaning prolactin was active in the tumors. At the same time, a large population study of nurses had found that women with higher levels of prolactin were at greater risk for breast cancer.

Soon thereafter, Dr. Clevenger was able to show how prolactin organized the breast cancer cells to move from the breast to other parts of the body.

His most recent discovery is how prolactin is able to get to the DNA of the cell and what it does there. For years, scientists assumed that as a peptide protein, prolactin worked from a distance, outside the cell (unlike steroid hormones which have the ability to leap across the cell membrane on their own, without any help). And indeed, prolactin does work outside the cell. It binds to prolactin receptors, proteins found at the surface of breast cells. When prolactin locks into the receptors, these receptors send out signals that activate genes to stimulate the production of proteins necessary for either milk production in normal breast cells or cancerous growth and spread in malignant ones.

But Dr. Clevenger did not believe this was the only way prolactin worked. Using breast cancer cells in a petri dish, he showed that prolactin is able to physically enter the cell, travel straight to the cell’s DNA, and directly activate the process that turns on genes and triggers the growth of breast cancer cells. It does this by binding to a protein called cyclophilin B, or CYPB for short. This protein serves as the chaperone (a scientific term as well as a very good descriptor) across the cell membrane and into the DNA. CYPB also is an active partner in turning on the genes critical in the development of cancer.

This is exciting news, says Dr. Clevenger. It means we can target drugs to particular tissues in ways not possible before. His own laboratory has applied mutant forms of the CYPB protein to breast cancer cells in vitro and found that breast cancer cells die and normal cells don’t. He says, "When scientists began to understand the implications of the hormone estrogen on breast cancer, it became possible to develop drugs to combat estrogen’s role. When it comes to combating the role of prolactin in breast cancer, we’re 10 years behind where we are with tamoxifen therapy. But then, with advances in science, what once took 10 years may now only take five years."

The discovery of how prolactin enters the cellular DNA is also exciting because "there is a larger message here than breast cancer," according to Dr. Clevenger. Other laboratories are finding other peptide hormones that wind up in the nucleus: hormones like epidermal growth factor, growth hormone, insulin. They haven’t yet found the mechanism similar to the chaperone protein that works for prolactin, but Dr. Clevenger hopes his findings will provide new therapies for other malignancies and diseases such as diabetes.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Health and Medicine:

nachricht Hepatitis: liver failure attributable to compromised blood supply
19.12.2018 | Technische Universität München

nachricht Collagen nanofibrils in mammalian tissues get stronger with exercise
14.12.2018 | University of Illinois College of Engineering

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New megalibrary approach proves useful for the rapid discovery of new materials

Northwestern discovery tool is thousands of times faster than conventional screening methods

Different eras of civilization are defined by the discovery of new materials, as new materials drive new capabilities. And yet, identifying the best material...

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Scientists to give artificial intelligence human hearing

19.12.2018 | Information Technology

Newly discovered adolescent star seen undergoing 'growth spurt'

19.12.2018 | Physics and Astronomy

From a plant sugar to toxic hydrogen sulfide

19.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>