Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New High-Tech Approach Identifies Two Proteins Involved in Lung Cancer

08.04.2003


Researchers at Duke University Medical Center have devised an advanced technique that uses mass spectrometry to identify specific proteins that are over-expressed in cancer cells, blood, urine, or any substance that contains proteins.



Using this new technique, they have already identified two proteins – MIF and CyP-A -- whose levels are elevated in lung cancer cells but not in normal cells, said Edward Patz, M.D., professor of radiology and pharmacology and cancer biology at Duke.

Their discovery is one of the first steps toward elucidating potential new drug targets aimed at blocking the effects of these proteins. Scientists could also develop a simple blood test using MIF and CyP-A as molecular markers to diagnose lung cancer without the need for invasive biopsies.


Results of the study are published in the April 1, 2003, issue of Cancer Research.

"Our technique is a new paradigm for identifying protein targets in cancer because we are zeroing in on the protein itself rather than searching for a defective gene and then hunting down its relevant proteins," said Patz, lead author of the study

The new technique uses a sophisticated analytical instrument called a mass spectrometer, which electrically charges or "ionizes" proteins, then determines each particle’s precise mass and relative abundance in a particular sample. The Duke team has expanded the use of mass spectrometry to determine the identity of proteins -- the first time this technique has ever been used to "fingerprint" proteins in lung cancer.

In doing so, they have reversed the traditional order of research in which scientists first identify a defective gene, and then identify the disease-specific protein it produces. Locating a defective gene is important, but it is only the starting point in the discovery process, emphasized Patz. A single gene can produce many different proteins, only one of which may be the culprit in a particular disease process, he said. Identifying the protein puts scientists much closer to the intended target of therapy, said Patz.

"Finding a new approach that can pinpoint which proteins contribute to malignancy is critical because current approaches we use to diagnose and treat lung cancer have had no significant impact on lung cancer mortality over the last several decades," said Patz. Despite extensive efforts in genomics, drug discovery and lung cancer screenings, the overall five-year survival rate remains about 14 percent, he said.

The Duke team, including molecular biologist Michael Campa Ph.D., and mass spectrometry expert Michael Fitzgerald, Ph.D., used an instrument called a "matrix-assisted laser desorption/ionization time-of-flight mass spectrometer" (MALDI-TOF) to electrically charge tumor particles. The instrument then determines each particle’s precise mass and hence its level or "expression" within tumors. The scientists then took the most significant protein "peaks" recorded by the instrument and purified the samples repeatedly until they were able to determine each protein’s unique amino acid structure or fingerprint.

The two proteins they identified in the lung cancer samples were MIF and CyP-A. MIF is known to be involved in non-small cell lung cancers, but CyP-A was not previously linked to lung cancer, and its exact functions in cancer are unknown. However, it may play a role in cellular growth and differentiation, transcription control, cell signaling and immunosuppression, all of which are important aspects of malignancy, said the researchers.

While the Duke team is not the first to observe significant protein peaks using MALDI-TOF, they are the first to actually identify which proteins they have observed and to begin analyzing the proteins’ functions within tumor cells.

"Scientists have generated protein peaks and used them to diagnose various diseases, but we have gone an extra step to discover what the protein is and to ultimately use that protein as a potential molecular target for therapy and diagnostics," said Patz. "It is useful to know that you have a marker for the disease, but it is far more useful to understand the biology of disease and use that knowledge to develop new strategies."

Even more exciting, said Patz, is that MALDI-TOF can be used to identify proteins in any substance, including blood, sputum, urine and tissue. The instrument can detect proteins of low molecular mass, acidic or basic proteins, and at concentrations much lower than other techniques are able to detect, thereby expanding the utility of MALDI-TOF to virtually any disease process.

Because of its sensitivity, Patz plans to use MALDI-TOF to develop a blood serum test to diagnose lung cancer in patients. Currently, patients with suspected lung cancers undergo multiple imaging studies using CT or PET, while others require a biopsy to analyze the tissue for malignancy. A simple blood test would spare patients from these procedures.

contact sources :
Dr. Edward Patz , 919-684-7311
patz0002@mc.duke.edu

Becky Levine | Duke University
Further information:
http://dukemednews.org/news/article.php?id=6487

More articles from Health and Medicine:

nachricht The FiTS app now offering cooking videos as it expands its concept for long-term behavior modification
18.09.2018 | vitaliberty GmbH

nachricht The microbiota in the intestines fuels tumour growth
18.09.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>