Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defect of cilia-assembly protein could cause most common genetic cause of kidney failure

01.04.2003


A protein responsible for the assembly of cell cilia – the hair-like projections from cells – may cause polycystic kidney disease, the most common genetic cause of kidney failure, according to a new study at UT Southwestern Medical Center at Dallas.



The study, which will be published online this week and will appear in a future edition of the Proceedings of the National Academy of Sciences, is the first to directly test the role of cilia in polycystic kidney disease. Previous studies have hinted at a possible link, said Dr. Peter Igarashi, chief of nephrology at UT Southwestern and senior author of the study.

"For a long time, renal cilia have been thought to be unimportant organelles," said Igarashi. "This study and others before it have renewed the interest in what cilia are doing normally and also how abnormalities in cilia cause disease."


Polycystic kidney disease (PKD) afflicts about one in every 500 people and causes fluid-filled cysts to accumulate in the kidney, liver and other organs. Formation of the cysts causes progressive renal failure, which requires dialysis or kidney transplantation. No other effective treatment is available.

To test whether stopping cilia formation causes PKD, researchers created knockout mice missing the gene Kif3, specifically in the kidneys. That gene codes for a motor protein that’s critical in cilia formation and maintenance. Researchers created kidney-specific knockouts because cilia are essential for embryonic development.

The knockout mice had normal kidneys at birth, but researchers found that kidney cysts began to develop about five days later and caused renal failure after about three weeks. Dissection by day 35 showed enlarged kidneys with multiple, fluid-filled cysts that had characteristics similar to cysts found in PKD.

"We are trying to understand the mechanism of cyst formation," said Dr. Fangming Lin, assistant professor of pediatrics and lead author of the study. "Once you understand the mechanism we will have the target to prevent or slow the cyst formation.

"That could eventually lead to a treatment of human polycystic disease."

Other UT Southwestern researchers who worked on the study were Dr. Thomas Hiesberger, assistant professor of internal medicine, and Kimberly Cordes, research assistant. Researchers from Yale University School of Medicine and the University of California, San Diego, School of Medicine also contributed to the study, which was funded by the National Institute of Diabetes and Digestive and Kidney Diseases.


###
To automatically receive news releases from UT Southwestern via e-mail, subscribe at http://lists.utsouthwestern.edu/mailman/listinfo/utswnews


Staishy Bostick Siem | EurekAlert!
Further information:
http://www.swmed.edu/

More articles from Health and Medicine:

nachricht Deep stimulation improves cognitive control by augmenting brain rhythms
04.04.2019 | Picower Institute at MIT

nachricht Black nanoparticles slow the growth of tumors
04.04.2019 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>