Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU scientists define adult stem cell healing abilities

31.03.2003


Research reveals how bone marrow-derived stem cells can be transformed into cells for the treatment of liver disease



Researchers at Oregon Health & Science University (OHSU) have explained how adult stem cells can heal diseased liver tissue. The research helps direct scientists in the quest for therapeutic uses of adult stem cells, which are derived from bone marrow. The research may also help define the therapeutic limits of these stem cells. The study results will be released online March 30 prior to being published in the journal Nature. The research was conducted in collaboration with Texas Children’s Hospital and Stem Cells Inc.

"Using mouse models, this research demonstrated that bone marrow-derived stem cells can combine with liver cells through a method known as cell fusion," explained Markus Grompe, M.D., a professor of molecular and medical genetics, and pediatrics in the OHSU School of Medicine. "This differs from earlier theories that adult stem cells can somehow be ’transformed’ into other cell types. The finding represents an important clarification on how adult stem cells can be transformed into therapeutically useful cells, capable of treating various diseases.


Cell fusion occurs when two or more cells combine to form one cell. The resulting cells contain more genetic material than normal. In a mouse model, for instance, fused liver cells may contain 80 chromosomes, double the amount found in a normal mouse liver cell.

To study the use of adult stem cells in treating liver disease, scientists at OHSU used a mouse model for a genetic disease called tyrosinemia, which causes severe liver damage. The research team used purified adult stem cells to treat these animals. While the transplanted cells resulted in a reversal of the liver damage, this reversal took place through cell fusion, not cell transformation.

Many recent reports have indicated that bone marrow stem cells can turn into other tissues such as brain, spinal cord, lung, intestine, pancreas or heart muscle. Although the OHSU research to date has demonstrated cell fusion only in liver, it is likely that cell fusion is responsible for many of these other cases of stem cell flexibility. The liver is able to heal using these cells. However, it’s possible that abnormal fused cells would not function in other regions of the body.

"While this research may help shift the focus of adult stem cell research, we also believe it’s a major step forward in utilizing stem cells to regenerate healthy liver cells in humans with liver disease," Grompe said. "The next step in this line of research would be to investigate whether there is a way to induce cell fusion, or speed up the fusion process, which is naturally quite slow and inefficient."

These results may also have applications in research for the burgeoning area of gene therapy. Scientists believe cell fusion may be a practical method for introducing new genetic material to correct mutated or malfunctioning genes that cause disease.


The National Institute of Diabetes and Digestive and Kidney Diseases, a component of the National Institutes of Health, funded this research.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>